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Abstract

In order to accelerate the deployment of CO2 capture and storage (CCS), engineers
need experimentally validated models, among other things, to predict the mass flow
rate in process equipment and flow restrictions like valves, nozzles and orifices.
There are few available, relevant data for choked CO2 flow in such geometries. To
amend the situation, in this work, we report on six pipe-depressurization experiments
from a pressure of 12 MPa and a temperature of 25 °C through three sizes (4.5, 9.0
and 12.7 mm) of orifices and nozzles. The results indicate that for the present cases,
the choke point is at a non-equilibrium state.

In order to predict quasi-steady choked flow in restrictions, the homogeneous
equilibrium model (HEM) and the Henry–Fauske (HF) model are commonly used. The
HEM often underpredicts the mass flow rate because it does not account for delayed
phase transition. Here we develop a delayed HEM (D-HEM) where evaporation starts
at the superheat limit described using classical nucleation theory. We then employ
the HEM, D-HEM, and HF model in 1D CFD pipe simulations to describe the outflow
of depressurization experiments and we also compare with experimental data for
converging-diverging nozzles.

In the CFD simulations, HF gave the best results, while HEM consistently under-
predicted the mass flux. For the nozzle calculations, we found D-HEM to be the best
model with a relative absolute error of 2.5 % for the predicted mass flux.
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Nomenclature

Latin letters
A Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m2

c Speed of sound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m/s
CC Contraction coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
d Diameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
E Total energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J/m3

e Specific internal energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J/kg
F Flux vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -
F Friction force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N/m3

G Free energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J
H Enthalpy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J
h Specific enthalpy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J/kg
j Mass flux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg/(m2 s)
J Nucleation rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1/(m3 s)
K Kinetic prefactor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1/(m3 s)
kB Boltzmann’s constant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J/K
l and L Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
m Mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg
ṁ Mass flow rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg/s
N Mol number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . mol
P Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pa
Q Heat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W/m3

r Radius . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
S Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J/K
s Specific entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J/(K kg)
T Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K
t Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s
u Velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m/s
V Volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m3

x Spatial coordinate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
z Mass fraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg/kg

Greek letters
α Volume fraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m3/m3

β Restriction angle parameter, Fig. 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . °
δ Orifice opening length parameter, Fig. 3 . . . . . . . . . . . . . . . . . . . . . . . m
µ Chemical potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J/mol
ρ Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg/m3

ρ̃ Number density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1/m3

σ Surface tension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N/m

Subscripts
amb Ambient
cons Conserved
crit Critical
b Cell at end of inner pipe domain adjacent the restriction
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g Gas
ℓ Liquid
pipe Position inside pipe
res Restriction
sat Saturation
up Upstream
vc Vena contracta
w Wall

Superscripts
∗ Critically-sized embryo

Abbreviations
CCS CO2 capture and storage
CFD Computational fluid dynamics
CNT Classical nucleation theory
DEM Delayed equilibrium model
D-HEM Delayed homogeneous equilibrium model
EOS Equation of state
HEM Homogeneous equilibrium model
HF Henry–Fauske
HRM Homogeneous relaxation model
RDF Running ductile fracture
SHL Superheat limit

1. Introduction

There is consensus that in order to mitigate climate change, CO2 capture and
storage (CCS) is one of the necessary tools (Edenhofer et al., 2014). In the IEA (2021)
scenario to reach net zero emissions by 2050, 7.6 gigatonnes of CO2 are captured
globally per year, out of which 95 % is permanently stored. Because capture plants
and storage sites are in general not colocated, a large-scale CO2-transportation
system needs to be deployed, including pipelines and ships. In designing, optimizing
and operating these systems, engineers need to quantify processes and phenomena
that are not all covered by standard engineering tools (Munkejord et al., 2016). This
includes the tight coupling of fluid and thermodynamics due to the proximity of the
operating conditions to both the critical point (above which there is only one phase)
and the triple point (at which gas, liquid and solid coexist). One practically important
topic is to predict the mass flow rate in flow restrictions like valves, nozzles and
orifices, both inside process equipment and in case of leaks to the surroundings.

When a fluid is depressurized through a restriction, the flow will become sonic
if the pressure difference is sufficiently large. This is called critical or choked
flow (Chapman, 2000). For sonic flow, there are no waves travelling upstream and
therefore no feedback from the downstream pressure, so that the flow rate becomes
independent of the downstream conditions. The correct prediction of critical flow is
relevant not only for CCS systems, but also refrigeration systems (Angielczyk et al.,
2010, 2019, 2020; Banasiak and Hafner, 2013; Ringstad et al., 2020), nuclear reactor
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safety (Downar-Zapolski et al., 1996; Pinhasi et al., 2005; De Lorenzo et al., 2017) and
in other industrial facilities involving pressurized fluids.

In ship transportation, the CO2 will be in a cold liquid state (Roussanaly et al.,
2021), whereas in pipelines, it will most often be in a dense liquid phase at super-
critical pressures (Munkejord et al., 2016). On depressurization from these states,
the liquid will evaporate, and solid CO2 will be formed at the triple point (see e.g.
Hammer et al., 2013). For such systems, valid critical-flow models are needed for
correct sizing of valves used for pressure reduction. The discharge mass flow rate
influences the depressurization rate of the system and impacts both the time to
empty it and the minimum temperature reached during depressurization.

During depressurization of liquids or dense-phase fluids, delayed phase transition
and the presence of metastable states is a well known phenomenon (Liao and Lucas,
2017), and departure from chemical and thermal equilibrium between the phases
must be accounted for. It is known that non-equilibrium flow models predict higher
characteristic speeds which in turn gives a higher critical mass flow rate (Flåtten
and Lund, 2011). Therefore, models like the often-used homogeneous equilibrium
model (HEM) that assume full equilibrium (mechanical, thermal and chemical) are
expected to underpredict the critical mass flow rate. Nevertheless, we have obtained
good results using the HEM for situations where the characteristic speeds are not
determining (Munkejord et al., 2020).

Departure from equilibrium is also relevant for the correct prediction of running
ductile fracture (RDF), a phenomenon whereby a defect in the pipeline, caused by
e.g. corrosion or external forces, develops into a fracture running along the pipe,
sustained by the pressure forces from the escaping fluid, see Aursand et al. (2016a).
Assuming full equilibrium will yield higher-than-realistic pressures and therefore a
wrong evaluation of the forces impacting the steel, see Munkejord et al. (2020).

In order to model CO2 flows out of equilibrium, the process of nucleation must
be taken into account. Shin and Jones (1993) and Blinkov et al. (1993) modelled
the effect of heterogeneous nucleation on the wall and in the bulk of the fluid for
water flowing through a converging-diverging nozzle. This work required empirical
correlations to describe the heterogeneous nucleation of bubbles on the nozzle
surface and impurities present in the bulk liquid. Their approach required an
involved integration over time and space and provided promising results. In the
present paper, the effect of heterogeneous nucleation is not included as the CO2

depressurization experiments studied are in the entropy region where spontaneous
homogeneous nucleation is the dominant mode of nucleation. This kind of nucleation
occurs in the bulk of the liquid without the aid of a surface or impurity, and it relates
closely to the limit of superheat, i.e., the experimentally attainable limit where
a superheated liquid spontaneously starts boiling. This is further discussed in
Section 3.3.

Following the approach presented by Debenedetti (1997, Sec. 3.1.5), Aursand
et al. (2016b) concluded that the superheat limit (SHL) of a fluid can be accurately
predicted by the use of classical nucleation theory (CNT). The CNT predictions
depend mainly on the saturation pressure and surface tension of the fluid, and in
order to predict the SHL, accurate models for both properties are required. Aursand
and Hammer (2018) employed the CNT models to predict rapid phase transition for
liquefied natural gas. For liquid and dense-phase specific entropies close to, but
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below, the critical entropy, Wilhelmsen and Aasen (2022) applied CNT to describe
delayed phase transition for flows of water, and CO2, in converging nozzles. At lower
temperatures (below about 280 K) and entropies, heterogeneous nucleation becomes
more important, and this effect was taken into account for water using an empirical
correlation.

Elias and Lellouche (1994) reviewed two-phase critical flow models with emphasis
on water-steam flows and nuclear reactor safety. The model review comprised
‘analytical models’ (models not requiring spatial or temporal integration) including
the HEM and the models of Moody (1965) and Henry and Fauske (1971) (HF), fitted
models, and steady-state two-phase flow models requiring spatial integration. The
data review evaluated 42 data sets. Elias and Lellouche found that none of the
analytical or fitted models satisfactorily captured the measured mass fluxes for the
range of conditions considered.

De Lorenzo et al. (2017) benchmarked the delayed equilibrium model (DEM) and
classical two-phase critical flow models against experimental data. In addition to
the HEM they evaluated the Moody (1965) and HF models. The DEM originated from
Lackme (1979) who assumed two-phase critical flow to be composed of three phases.
In addition to saturated vapour, the flow model contained both a saturated and
a metastable liquid. Assessing more than 450 experimental data points for three
configurations, long tubes, short nozzles and slits, De Lorenzo et al. concluded that
the DEM model was superior to the other models, and that HEM predicted the long
tube critical flux well while HF overestimated the mass flux in the same geometry.
Moody’s model had too much slip and overestimated the mass flux for two-phase
stagnation conditions.

The homogeneous relaxation model (HRM) takes into account the non-equilibrium
evaporation leading to metastable liquid states. In this model, the phases have the
same pressure and temperature, but are allowed to have different chemical potential.
The model, as formulated by Downar-Zapolski et al. (1996), requires a relaxation time
to account for time delay in the phase transition. Angielczyk et al. (2010) adapted the
relaxation-time correlation developed for water by Downar-Zapolski et al. to work
with CO2 utilizing experimental data by Nakagawa et al. (2009). These experiments
were performed using four different converging-diverging nozzles, with different
angles in the diverging part. The fluid used was pure CO2 that was expanded from a
constant upstream pressure. The mass flow rate was estimated assuming a saturated
state at the throat, but it was not tabulated by the authors. Brown et al. (2013) used
the empirical correlation of Angielczyk et al. to describe the relaxation time in pipe
depressurization simulations.

Common formulations of the DEM (De Lorenzo et al., 2017) and HRM (Downar-
Zapolski et al., 1996) rely on time-dependent mass transfer between the phases,
and require temporal as well as spatial integration over a fully defined geometry.
This makes them less generic than the classical methods such as HEM and HF. The
steady-state HEM flow can be determined without time integration and HF is a set of
analytical equations. Modelling the restriction geometry in detail may be challenging,
e.g., for simulations of long pipes, where the spatial resolution of the restriction is
not resolved, or for cases where the geometry is partly unknown. Attempts have
been made to devise robust numerical methods to simulate transient flow of CO2

through pipes or ducts with discontinuous variation of the cross section (Brown
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et al., 2015; Log et al., 2021), but so far, these methods have only been applied to
equilibrium flow models.

We have only found a limited amount of experimental data of CO2 flowing through
nozzles or orifices that include the mass flow rate and where the decompression
path comes from the liquid side of the phase diagram. Hesson and Peck (1958)
presented critical flow rates for saturated liquid and saturated vapour CO2 for a
nozzle and an orifice. Henry and Fauske (1971) used the data of Hesson and Peck
when developing the HF model. However, Hendricks et al. (1972) questioned the
accuracy of the Hesson and Peck data. The measured fluxes were found to be higher
than expected, indicating that the liquid states were sub-cooled to some degree.

Martin et al. (2006) performed experiments of supercritical and liquid CO2 with
short tube orifices of length 20 mm and diameter 0.8 mm and 1 mm. The meas-
ured mass flow rate increased with increasing upstream pressure and decreasing
temperature.

Edlebeck et al. (2014) reported a comprehensive data set for supercritical and
two-phase CO2 flowing through orifices. The orifices were of 1 mm diameter and
length-to-diameter ratios of 3.2 and 5. Edlebeck et al. measured the mass flow
rates for a wide range of initial conditions, and compared with the isentropic real
gas model for fluid expansion through a nozzle. The comparison gave a discharge
coefficient for single phase between 0.81 and 0.87.

Banasiak and Hafner (2013) experimentally measured the mass flow rate of dense-
phase CO2 in a converging-diverging nozzle used in ejectors. A nozzle flow model
was presented, including delayed equilibrium accounting for both homogeneous and
heterogeneous nucleation.

Vree et al. (2015) tested rapid depressurization of CO2 through 3, 6, and 12 mm
nozzles connected to a coil-shaped tube. Mass flow rates were reported, but not
as a function of the upstream state. In a somewhat similar study, Li et al. (2016)
experimentally investigated the leakage of CO2 at supercritical pressures through
nozzles of different shapes and sizes in the millimetre range. Fan et al. (2018)
studied supercritical CO2 leaking through nozzles with length-diameter ratio (L/D)
ranging from 1 to 15. It was found that the choked mass flow rate decreased with
increasing length-diameter ratio.

Pipe depressurizations through restrictions have implicit information on the mass
flux through the measured pressure as long as the upstream state is single-phase.
This can alleviate the lack of experiments with directly measured mass flow rates.
The mass flux can be calculated using the Euler compatibility equation, as we will
discuss in Section 3.1.

Armstrong and Allason (2014) conducted experiments in which a 200 m long pipe
with inner diameter 50 mm was depressurized full-bore or through sharp orifice
plates. Two of the experiments had a pipe aperture ratio low enough that the entire
initial rarefaction wave remained in the single-phase region. Guo et al. (2016, 2017)
and Yan et al. (2018) studied the depressurization of a large pipe of length 257 m
and inner diameter 233 mm with full-bore opening and two orifices. They observed
pressure transients attributed to phase change as pressure waves were reflected at
the pipe ends. Martynov et al. (2018) studied the decompression of a 36.7 mm long
pipe with internal diameter 50 mm through orifices of diameter 4 and 6 mm. The
focus of the study was the formation of solid CO2 at the triple point.
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To sum up the state of the art, considerable work has been undertaken on
critical flow through restrictions, but the main emphasis has been on geometries
like converging-diverging nozzles. Among the studies on nozzles that we reviewed,
only few could be directly used in the present model evaluation, e.g., reporting the
upstream state so that the mass flow rate could be calculated. Further, there is a
need to develop and validate models that are generic enough to be implemented in
simulation tools for CCS applications such as pipes and vessels.

In this work, the decompression-tube facility described in Munkejord et al. (2020)
has been equipped with interchangeable outflow restrictions. We thus present
new critical-flow data for CO2 exiting through sharp-edged orifices and converging
nozzles. In addition to modelling the outflow using the classical HEM and HF
models, we propose an augmented steady-state HEM (D-HEM) capturing the delayed
phase transition and entropy production during mass transfer. These restricted-flow
models are discussed both separately and as part of 1D CFD pipe simulations.

The rest of the article is structured as follows: Section 2 briefly describes the
experimental setup and procedure. Section 3 presents the theoretical framework for
analysing the experimental data, and the models used to predict the mass flux in
the nozzle and orifice geometries. Section 4 presents experimental and simulation
results, and discusses our observations. Section 5 summarizes the main results and
conclusions.

2. Experimental setup

This section gives an overview of the experimental setup. A more detailed
description can be found in Munkejord et al. (2020).

2.1. ECCSEL depressurization facility

The test section of the ECCSEL depressurization facility ECCSEL (2021) consists of
a pipe equipped with a rupture disk at the open end and instrumented to observe the
rapid pressure and temperature transients occurring during depressurization of CO2

and CO2-rich mixtures. It is connected to the gas supply with mass flow controllers,
and the compression and cooling system for achieving the desired experimental
conditions. Figure 1a shows a schematic overview. The maximum operating pressure
of the facility is 20 MPa, and the current design allows experiments with initial
temperatures in the range of 5 °C to 40 °C.

The test section is made of 11 stainless steel (SS316, EN 1.4401) pipes giving a
total length of 61.67 m, as depicted in Figure 1b. The pipes have an inner diameter
of 40.8 mm and outer diameter of 48.3 mm, and the internal surface of the pipes
were honed to a mean roughness, Ra, in a range from 0.2 µm to 0.3 µm. In order to
achieve a uniform axial temperature, the pipe is wrapped by self-regulating positive
temperature coefficient (PTC) heating cables and insulated with a 60 mm thick glass
wool layer. The power output of the heating cables is 1900 W at 20 °C and 950 W at
40 °C.

A rupture disk with a disk holder is installed at the pipe outlet. The specified
burst pressure of the disk is 120 barg±5% at 22 °C. The depressurization is triggered
once the disk ruptures. Two rupture disk types are employed in this study; X-scored
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(a) System (RV: relief valve; OV: one-way valve; PV: pneumatic valve)

(b) Test section (dimensions are not to scale; pipe no. 5–10 and corresponding sensors are omitted.)

Figure 1: Schematic of the ECCSEL depressurization facility.

Fike SCRD BT FSR for Tests 8 and 13 and circular-scored triple-layer Fike HOV BT HL
for the remaining experiments (Tests 16–18), see Table 2. A fully opened triple-layer
disk is shown in Figure 2a.

In order to perform depressurization tests with different restrictions at the pipe
outlet, we manufactured a series of screw-in tubes with orifice and nozzle profiles,
as illustrated in Figure 3. The dimensions are given in Table 1. In the current work,
three restriction diameters, 4.5 mm, 9.0 mm and 12.7 mm, are employed for both
the orifice and nozzle geometry. The screw-in tube, depicted in Figure 2b for the
12.7 mm nozzle, is mounted immediately upstream of the rupture disk. The design
is such that the flow will choke at the same position as in the full-bore experiments
reported in Munkejord et al. (2020, 2021).

2.2. Instrumentation and test procedure

Along the test section, 16 fast-response pressure transducers of model Kulite
CTL-190(M) are flush-mounted to the internal surface. Most of them are densely
distributed close to the rupture disk to capture the decompression wave, as depicted
in Figure 1b. The fluid temperature is measured by 23 Type E thermocouples. The
measurement uncertainty of pressure is ±60 kPa and temperature uncertainty is
±0.22 °C, both with a confidence level of 95 %. In the present work, we focus on
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(a) Triple-layer rupture disk after test. (b) Converging nozzle of 12.7 mm diameter.

Figure 2: Pictures of rupture disk and converging nozzle.

(a) Orifice (b) Converging nozzle

Figure 3: Schematic of orifice and converging nozzle. The flow direction is from the right to
the left.
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Table 1: Geometry of the orifices and nozzles used for our experiments.

Test no. d (mm) l (mm) β (°) δ (mm) L (mm)

Orifice, large 13 12.7 4 45 0.8 –
Orifice, medium 21 9.0 4 45 0.8 –
Orifice, small 16 4.5 4 45 0.8 –
Nozzle, large 18 12.7 5 30 – 22.3
Nozzle, medium 20 9.0 4 35 – 24.5
Nozzle, small 17 4.5 3 45 – 29.3

investigation of the outflow, thus only the data recorded at the position closest to the
outlet, at the location of 0.08 m, will be presented. Details regarding sensor location,
calibration, and uncertainty analysis can be found in Munkejord et al. (2020).

The logging frequency of the data from the pressure transducers and thermo-
couples is 100 kHz and 1 kHz, respectively. The high-frequency data are stored from
0.3 s before disk rupture for a 9 s period. Afterwards, both pressure and temperature
data are recorded at 50 Hz. The reported initial conditions of the experiments are
calculated from the data between 1 ms and 0.5 ms before disk rupture.

The experimental procedure involves the following steps. First, the rupture disk
is installed and the system is evacuated. Then the test section is filled with CO2

and pressurized. When the pressure reaches about 70% of the desired pressure, the
fluid is circulated to achieve a uniform temperature along the test section. The fluid
temperature is controlled using heating elements wrapped around the test section.
The desired pressure and temperature are achieved by further heating and addition
of CO2 if needed, both at a controlled rate, until the disk ruptures. Upon disk rupture,
the two pneumatic valves at the ends of the test section are automatically closed to
stop circulation. After the test, the system is emptied.

3. Models

In this section, we start by describing how the mass flow-rate can be computed
from pressure data of a depressurization experiment. Next, we give a short descrip-
tion of the thermophysical models used in this work. We then discuss how classical
nucleation theory can be applied to calculate the superheat limit, which is used for
delayed phase transition considerations in steady-state critical flow models. Finally,
we describe the model used for calculating the vena contracta area reduction of the
orifice and we give an outline of the 1D CFD model used for the simulations.

3.1. The Euler compatibility equation for the rarefaction wave

When the rupture disk at the end of the pipe opens, flow is established through
the outlet restriction, and a rarefaction wave starts travelling into the pipe. The mass
flow rate will depend on the size of the restriction and the fluid state inside the
pipe, close to the outlet. After a short initial time, allowing for the fluid to accelerate
through the restriction, a quasi-steady state is established, where the flow through
the restriction is constant and a pressure plateau (P1) is established in the pipe
with a constant mass flow rate downstream of the rarefaction wave, see Figure 4.
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x

P0

P1

PA

Rarefaction
wave traveling

right

Outflow
through
restriction

Figure 4: Example of an adiabatic pipe depressurization trough a restriction on the left side.
The pressure in the pipeline is plotted against axial position for a given time. The initial
pipe pressure is P0 and the pressure drops to P1 due to the outlet flow. PA is the ambient
pressure.

The change in fluid velocity across a rarefaction wave in a single-phase fluid can be
described using a compatibility equation of the Euler equations (Picard and Bishnoi,
1988).

The compatibility equations are found when rewriting the original differential
equations along the characteristics. The sudden outflow constitutes an event oppos-
ite of a hydraulic shock (often referred to as ‘fluid hammer’ or ‘water hammer’), and
the compatibility equation is equivalent to the Joukowsky equation used to analyse
such events. Using only the pressure measurements and an accurate equation of
state (EOS) for the fluid properties, we can calculate the constant velocity in the pipe.
The Euler compatibility equation for the rarefaction wave states that, at constant

entropy,
dP = ρcdu. (1)

Knowing the initial pressure, P0, the initial velocity, u0 = 0, and plateau pressure, P1,
from the experiments, we can integrate the equation (1) to find the velocity behind
the rarefaction wave in the pipe as

u1 =
∫ P1

P0

dP
ρc
. (2)

The mass flow rate corresponding to the change in pressure can then be calculated
from the fluid velocity and the fluid properties as ṁ = (uρ)1Apipe. For single-phase
flow, the density, ρ (s, P), and speed of sound, c (s, P), can be calculated from an
equation of state given the entropy (s) and pressure.

3.2. Thermophysical models

For the calculation of thermophysical properties, we employ our in-house frame-
work (Wilhelmsen et al., 2017; Hammer et al., 2020). To describe the thermodynamic
properties of pure CO2, we have utilized the GERG-2008 (Kunz and Wagner, 2012)
and the Span and Wagner (1996) EOS, which are highly accurate Helmholtz-type
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EOSs. GERG-2008 is developed for mixtures, but when employed for pure CO2, it
will give very similar predictions to those of the more accurate Span–Wagner EOS.
The main difference will be in the close proximity of the critical point, where the
Span–Wagner EOS has some enhancement terms. The EOSs are used to calculate
the densities and energies of the existing phases in both the stable and metastable
region. The development of the GERG-2008 and Span–Wagner EOS was purely based
on experimental measurements of stable thermodynamic states. In addition, these
EOSs exhibit an additional unphysical Maxwell-loop in the unstable area (Wilhelmsen
et al., 2017).

The accuracy in the metastable liquid region and the accuracy in predicting
the spinodal curve is therefore unknown. Alternative equations of state based
on statistical thermodynamics are expected to be more physically correct in the
metastable region. However, the density and speed-of-sound predictions of GERG-
2008 and Span–Wagner EOS are far superior in the stable domain compared to
alternative EOSs, and they are therefore used in this work. How far the better
predictions will extend into the metastable region is unknown.

To calculate the CO2 surface tension we employ the correlation of Rathjen and
Straub (1977), and the viscosity is modelled using the correlation of Fenghour et al.
(1998).

3.3. Estimating the liquid superheat limit using classical nucleation theory
Before describing restricted-flow models accounting for delayed phase transition,

it is useful to define what we mean by the SHL. When a liquid reaches its superheat
limit, random fluctuations of density will cause the formation of critically-sized gas
bubbles that can grow due to evaporation on the gas-liquid interface or by coalescing
with other bubbles. The formation of critically-sized embryos in a metastable phase
is called nucleation. This is an activated process, meaning that a certain free-
energy barrier must be overcome to form embryos of the new phase. If nucleation
occurs spontaneously within the bulk of the fluid, it is called homogeneous. On
the other hand, if nucleation occurs on a surface or an impurity such that the
free-energy barrier is lowered, it is called heterogeneous. Heterogeneous nucleation
dominates at lower temperatures, whereas homogeneous nucleation dominates at
higher temperatures.

The data which we will analyse are mostly in the high-temperature region. There-
fore, we consider the model presented by Aursand et al. (2016b) to estimate the
homogeneous liquid superheat limit. This model is based on CNT, as described by
Debenedetti (1997), in which the nucleation rate (critically-sized embryos formed
per volume and time) is defined as an Arrhenius-type rate law,

J = K exp

(
−∆G

∗

kBTℓ

)
, (3)

where ∆G is the free-energy barrier of embryo formation, kB is the Boltzmann
constant and K is a kinetic prefactor. The superscript ∗ denotes properties of a
critically-sized embryo. Such embryos are just large enough to not spontaneously
decompose back to the mother phase. The free-energy barrier is estimated to be

∆G∗ = 4πσr∗2

3
, (4)
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where σ denotes the surface tension and r the radius of the embryo. It is assumed
that the surface tension of the embryo, σ , is equal to the macroscopic surface tension
of a planar interface between the phases at equilibrium.

For the formation of bubbles in a metastable liquid, the critical radius is approx-
imated as

r∗ = 2σ
Psat(Tℓ)− Pℓ

, (5)

where Psat(Tℓ) is the saturation pressure at the temperature of the liquid. The kinetic
prefactor can be approximated as

K = ρ̃ℓ

√
2σ
πm

, (6)

where m is the mass of one molecule and ρ̃ℓ = ρℓ/m is the number density of
molecules in the liquid. With these relations, the SHL temperature can be estimated
by solving

J(Tℓ) = Jcrit (7)

for Tℓ. Here, Jcrit is the critical nucleation rate, at which sudden phase change is
observed (Aursand et al., 2016b). In this work, we follow Aursand et al. (2016b),
employing Jcrit = 1× 1012/(m3 s). Due to the exponential functional form in (3), the
superheat limit is not very sensitive to the critical rate.

The SHL curve for CO2 is plotted in Figure 5a, and it will always lie between the
saturation curve and the spinodal curve. The spinodal curve of a pure fluid is the
loci of ∂P

∂ρ

∣∣
T = 0, which is a property predicted by the GERG-2008 EOS.

3.4. Steady-state flow through restrictions

To model flow through restrictions while avoiding detailed spatial and temporal
integration, one must resort to steady-state flow modelling and ignore friction. This
is reasonable for many practical applications. The fluid velocity, u, is then calculated
from energy conservation under isentropic expansion, i.e., constant stagnation
enthalpy,

h+ 1
2
u2 = C, (8)

where C is a constant. When the difference between the upstream pressure (Pup)
and the downstream pressure (Pamb) is sufficiently large, the flow will choke when
the velocity equals the speed of sound on the calculated path, see the example for
HEM in Appendix B. Otherwise, the flow will remain subsonic and the flow rate is
determined from (8) and the downstream pressure. In any case, the main output
from the restricted-flow model is the mass flux

jres = (ρu)res = jres
(
uup, sup, Pup, Pamb

)
. (9)

The above equations (8) and (9) have been formulated for equilibrium flow for
simplicity. It is possible to extend them to non-equilibrium conditions if needed.

In the cases we consider here, at a certain point between the upstream and the
ambient conditions, a two-phase state will be encountered. It is straightforward to
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write the HEM as a steady-state model, only requiring isentropic path calculations.
The HEM assumes full equilibrium (mechanical, thermal and chemical) between
the gas and the liquid phase. As a consequence, the calculated speed of sound is
discontinuous at the saturation curve.

The Henry and Fauske (1971) model incorporates some departure from equilib-
rium, and the flashing at the throat is correlated against the equilibrium flashing of
the liquid. In the HF model, the liquid phase is treated as incompressible, while the
gas is approximated as polytropic, with a polytropic exponent calculated assuming
thermal equilibrium between the gas and the liquid. For the experiments in this work,
the upstream gas fraction is always zero, so we need not discuss the approximate
gas properties description in the HF model. To calculate jHF

res, we solve Equation (45)
of Henry and Fauske (1971) numerically.

Most models that include some delayed flashing, like the DEM and HRM, require
that the flow be integrated over the nozzle geometry. As the geometry in many
cases is complex or partly unknown, engineering process and pipe-flow simulators
often rely on correlations or models like HEM and HF to describe flow rates in valves
and nozzles based only on information of flow area and a discharge or contraction
coefficient. If a valve flow coefficient is specified, in order to predict the flow rate, we
must convert the flow coefficient to an equivalent flow area. In the following section,
we propose a model including delayed flashing that does not require integration over
the geometry.

3.5. Delayed homogeneous equilibrium model
In rarefaction-wave measurements from full-bore depressurization experiments

of CO2, one can observe a process where the fluid first experiences delayed phase
transition, and then shows an equilibrium-like behaviour after an intermediate
transition region (Munkejord et al., 2020, Figs. 14 and 15). The same experimental
data are plotted in Figure 8. In order to model the process, we will as a first
approximation ignore the behaviour in this intermediate region (seen for c − u
between 280 m/s and 360 m/s in Figure 8b).

We next assume that the fluid experiences some delayed phase transition activated
at the SHL and transitions into equilibrium flow at the SHL pressure. We then
get a simple model that captures at least some of the observed essential physics.
The energy is conserved during this process, and the fluid velocity given by the
equation (8) should be continuous. This leads to a process of constant enthalpy at
the SHL pressure. We note that the assumption of a process of constant pressure
after the SHL is likely a simplification because the pressure has been observed
to increase in pipe experiments when rapid evaporation follows delayed phase
transition (Munkejord et al., 2020, Figure 8, Sensor PT203).

The above approach is a steady-state delayed homogeneous equilibrium model,
which we label D-HEM. In summary, the process steps of the model are illustrated
in Figures 5a and 5b for the pressure-temperature and pressure-entropy space,
respectively:

• Point 1 is the fluid state upstream of the restriction.

• Point 2 is reached by isentropic expansion to the SHL. The fluid velocity is
calculated from (8).
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Figure 5: Expansion path (blue curve) illustrating the D-HEM. The path 1–2 is isentropic with
no phase transfer, followed by the isenthalpic and isobaric path 2–3 where the metastable
state 2 is transformed to the equilibrium two-phase state 3. If the flow is not critical, the
expansion path ends in an isentropic two-phase equilibrium path 3–4. The saturation curve,
liquid spinodal and SHL line are shown. All curves are calculated using the GERG-2008 EOS.

• Point 3 is the equilibrium state resulting from an isenthalpic evaporation
process of the metastable liquid state at the SHL pressure.

• Point 4 is the isentropic HEM expansion from Point 3.

In the following we verify that D-HEM is physically sound, and does not violate the
second law of thermodynamics. The overall enthalpy, H, differential is given as

dH = T dS + V dP + µ dN. (10)

Here, T is temperature, S is entropy, V is volume, µ is chemical potential and N is
the number of moles. Setting the differential to zero, at constant pressure for a pure
fluid distributed in two phases, we have,

dH = d
(
Hg +Hℓ

)
= Tg dSg + Tℓ dSℓ + µg dNg + µℓ dNℓ = 0. (11)

If we assume temperature equilibrium between the phases, we get Tg dSg + Tℓ dSℓ =
T d

(
Sg + Sℓ

)
= T dS.

For a process of bubble nucleation, we have dN = dNg = −dNℓ, which gives the
following entropy production for the phase transition,

dS
dN

= µℓ − µg

T
. (12)

As the liquid fugacity in the metastable region is higher than the gas fugacity, the
phase transition will produce entropy. The effect of the entropy production in mass
flux predictions is small, and could probably be ignored at the expense of having
a discontinuous velocity at the SHL pressure. In this work we include the effect of
entropy production.
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Even if the fluid velocity is continuous at the SHL pressure, the density is not,
giving a discontinuous reduction in mass flux during the isenthalpic evaporation.
If the fluid reaches sonic velocities after the SHL, the choke flux is taken as the
maximum of the flux at the SHL and the flux where the HEM chokes.

3.6. Flow contraction at orifices

The coefficient of contraction is defined as the ratio between the area of the jet at
the vena contracta and the area of the restriction geometry,

CC =
Avc

Ares
. (13)

See also Figure C.14 in Appendix C. For a nozzle, the streamlines follow the geometry,
except in a thin boundary layer, and the loss is very small. By using the method of
Tesǎr (2008) we have estimated the contraction coefficient for our cases to be larger
than CC = 0.99. For simplicity, we round off to CC = 1.

On the other hand, for a sharp-edged orifice, CC < 1. For an incompressible, ideal
flow in a sharp-edged orifice, the contraction coefficient is known to be (Lienhard
and Lienhard, 1984),

CC,i =
π

π + 2
. (14)

By making a simple assumption about the flow pattern at the walls, Bragg (1960)
accounted for the compressibility effects on the contraction coefficient. Using a force
balance on the fluid from upstream of the flow restriction down to the vena contracta,
he derived equations for the contraction coefficient of isentropic ideal gas flow. In
this work we use the same assumptions but rigorously solve the GERG-2008 EOS for
the properties of the flow. In the calculation of the contraction coefficient we assume
frozen flow, i.e., no phase transfer. The incompressible contraction coefficient in (14)
is used as input to the model of Bragg (1960). Further details on the calculation of
the contraction coefficient can be found in Appendix C.

3.7. Pipe-flow model

We have implemented the quasi-steady-state HEM, D-HEM and HF models for flow
through restrictions discussed above in our numerical workbench for 1D, transient,
multiphase, multicomponent flow in pipes. In the inner domain of that model,
the fluid flow is modelled using the HEM including source terms for wall friction
and heat transfer through the pipe wall. The model has been presented previously
(Munkejord and Hammer, 2015; Munkejord et al., 2016), and we briefly review it here
for completeness. We remark that it is common to use separate outflow models
to provide the boundary conditions to transient pipe-flow models (see Elias and
Lellouche, 1994, Sec. 4).

The governing equations have the same form as the Euler equations for single-
phase, compressible, inviscid flow, and consist of a mass-conservation equation,

∂
∂t
(ρ)+ ∂

∂x
(ρu) = 0, (15)

16



a momentum-balance equation,

∂
∂t
(ρu)+ ∂

∂x
(ρu2 + P) = −F, (16)

and a balance equation for the total energy,

∂
∂t
(E)+ ∂

∂x
u(E + P) = Q. (17)

Herein, ρ = αgρg +αℓρℓ is the density of the gas (g) and liquid (ℓ) mixture. u is the
common velocity and P is the pressure. E = ρ(e+ 1/2u2) is the total energy density

of the mixture, while e =
(
egαgρg + eℓαℓρℓ

)
/ρ is the mixture specific internal

energy. αk denotes the volume fraction of phase k ∈ g, ℓ. F is the wall friction
and Q is the heat transferred through the pipe wall to the fluid. The wall friction is
calculated by the Friedel (1979) correlation. The heat conduction through the pipe
steel and the surrounding insulation is calculated by solving the heat equation in the
radial direction in a two-layer domain, as described by Aursand et al. (2017). The
in-pipe heat-transfer coefficient is calculated based on the Dittus–Boelter correlation,
see e.g. Bejan (1993, Chap. 6). The outside heat-transfer coefficient is estimated
to be 4 W/(m2 K). For more details on the friction and heat-transfer modelling, see
Munkejord et al. (2021).

At the outflow boundary, a flux, F, is enforced for the governing equations
(15)–(17). Given the mass flux per cell cross-sectional area,

jpipe = jres
Ares

Apipe
, (18)

calculated from the restricted-flow model, and the state of the boundary cell, the
following flux vector is used,

F =

 jpipe

jpipeub + Pb

jpipe

(
hb + 1

2u
2
b

)
 . (19)

Here, the subscript b refers to the cell at the end of the inner pipe domain adjacent
to the outflow restriction. In the case when jpipe = (ρu)b, the flux will extract
mass from the pipe isentropically. However, numerically, we see a small entropy
production at the boundary.

We solve the system (15)–(17) using the finite-volume method, where the numer-
ical fluxes are calculated using the first-order centred (FORCE) scheme (Toro and Bil-
lett, 2000). As described in Hammer et al. (2013), we obtain a second-order method by
employing a semi-discrete monotone upwind-centred scheme for conservation laws
(MUSCL) along with a second-order strong-stability-preserving Runge–Kutta method.
For the simulations performed in this work, we employed a Courant–Friedrichs–Lewy
(CFL) number of 0.85, and a spatial grid of 4800 cells. The Span–Wagner EOS is used
to calculate the CO2 fluid properties.
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Table 2: Experimental conditions of the depressurization tests of CO2 with orifices and
nozzles.

Test no. Type
Diameter
(mm)

Aperture
ratio (%)

Pressure
avg. (MPa)

Temperature
avg. (°C)

Ambient
temp. (°C) Figures

8** Full-bore 40.8 100 12.22 24.6 9 6. 8b
13* Orifice 12.7 9.7 12.75 24.6 12 6, 10a
16* Orifice 4.5 1.2 12.18 24.7 7 6, 10c
17* Nozzle 4.5 1.2 12.43 25.2 7 6, 9c
18* Nozzle 12.7 9.7 12.41 25.4 9 6, 9a
20* Nozzle 9.0 4.9 11.42 23.4 7 6, 9b
21* Orifice 9.0 4.9 11.51 23.2 0 6, 10b

* Present work. ** Munkejord et al. (2020).

4. Results and discussion

In this section, we present new pipe-depressurization data taken at the same
nominal conditions (12 MPa, 25 °C) for same-size nozzles and orifices. Next, we
compare measured pressure traces with transient 1D CFD simulations and discuss
the performance of the different restricted-flow models. Finally, we expand the
analysis of the restricted-flow models by including published data on flow through
nozzles.

4.1. Pipe depressurization

The initial conditions of the depressurization experiments and the restrictions
are listed in Table 2. We report on six experiments with three sizes of orifices and
nozzles. A previous full-bore experiment (Test 8) is included as a reference.

4.1.1. Pressure response to different outlet restrictions
Figure 6 shows the pressure measured at x = 0.08 m from the outlet in the seven

tests 8, 13, 16, 17, 18, 20 and 21 defined in Table 2. Following a single pressure
trace, e.g. Test 13, we observe that the pressure drops fast from the initial level to a
plateau of 9.5 MPa upon arrival of the first rarefaction wave. The pressure remains
at the plateau for about 0.3 s, the time required for the wave to travel to the closed
end and be reflected back, after which the pressure again drops to a lower plateau
value. When the wave enters the two-phase region, the evaporated gas will maintain
the pipe pressure while the mass flux drops.

The effect of the outlet restriction sizes can be seen by comparing the full-bore
test (no. 8) and the nozzle tests (nos. 17, 18 and 20) in Figure 6. One can observe that
for the full-bore test, there is only one pressure plateau and it lasts for very short
time. The pressure continues to drop afterwards and enters the two-phase region.
For the tests with a restricted outlet, the number of pressure plateaux increases as
the diameter decreases, and it takes longer to reach a two-phase state.

The difference between nozzles and orifices of the same diameter can also be
observed in Figure 6. When comparing Tests 16 (orifice) and 17 (nozzle), fewer
pressure plateaux are observed for the nozzle, and the pressure levels are lower.
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Figure 6: Measured pressure at x = 0.08 m for the tests in Table 2.

This is caused by the vena contracta area reduction of the orifice. In the end, both
cases reach a similar two-phase pressure state.

4.1.2. Comparison of HEM and D-HEM
Before discussing results obtained using our transient pipe-flow model, we want

to consider some of the differences between HEM and D-HEM presented in Section 3.5.
Figure 7 compares HEM and D-HEM for a decompression process, plotting speed of
sound and fluid velocity as a function of pressure for pure CO2. The effect of the
delayed phase transition is seen to be small for the fluid velocity, but the impact on
the speed of sound is large, due to the difference in the equilibrium speed of sound
compared to the metastable liquid speed of sound. The effect on fluid velocity of
reducing the pressure along the same isentrope is also illustrated. For sufficiently
low pressures, 5.5 MPa in the example, the flow will no longer choke at the SHL but
in the following delayed HEM flow region.

We now consider two full-bore depressurization tests (Tests 6 and 8) reported
in Munkejord et al. (2020). In Figure 8, we have plotted experimentally observed
decompression-wave speeds along with model predictions by HEM and D-HEM. The
modelled decompression-wave speed curves are found by integrating (1). Such curves
are valuable for assessing running ductile fracture in pipelines, and are often plotted
together with the fracture speed in the Battelle two-curve method (see Aursand et al.,
2016a). For Test 6, we observe in Figure 8a that the decompression path enters the
two-phase region close to the critical pressure. In this case, the HEM and D-HEM have
the same performance, and they are both in good agreement with the experiment. For
Test 8, shown in Figure 8b, the decompression path enters the two-phase region at a
lower pressure. Here, the HEM predicts phase transition at about 5.2 MPa, whereas
the D-HEM gives phase transition at about 4.2 MPa. This level agrees well with the
experiment, which indicates departure from thermodynamic equilibrium in the flow
path. However, in the experiment, we observe a more gradual transition between a
metastable state and a more homogeneous equilibrium state, indicating less entropy
production than calculated by the D-HEM.

The difference between Tests 6 and 8 can be further illuminated by considering

19



0 2 4 6 8 10 12
P (MPa)

0

100

200

300

400

500

c 
an

d 
u 

(m
/s

) c, HEM
c, D-HEM
u, HEM (P0=12.2)
u, D-HEM (P0=12.2)
u, HEM (P0=5.5)
u, D-HEM (P0=5.5)
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(b) Test 8: T0 = 24.6 ◦C, P0 = 12.22 MPa.

Figure 8: Experimentally observed and calculated decompression-wave velocities for full-bore
depressurizations of pure CO2 (Munkejord et al., 2020, Figs. 14 and 15). The GERG-2008
EOS is used for the property predictions.

Figure 5a. Close the critical point, there is little difference between the superheat
limit and the saturation curve. Therefore, for Test 6, there is little difference between
HEM and D-HEM, as opposed to the case for Test 8.

4.1.3. Comparison of nozzle experiments and 1D CFD simulations
We have simulated the above cases employing our transient pipe-flow model

described in Section 3.7 together with the restricted-flow models in Section 3.4.
Figure 9 displays the measured and simulated pressure for Tests 17, 18 and 20 with
nozzles, at x = 0.08 m from the outlet.

In Figure 9a for Test 18 with a 12.7 mm nozzle, we observe a fast pressure drop
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to a plateau pressure of 8.8 MPa, and the plateau remains for about 0.26 s. Upon
arrival of the decompression wave reflected from the closed end of the pipe, the
pressure further decreases. As already shown in Figure 6, there are several plateaux
before the two-phase region is reached. The pressures simulated using the three
restricted-flow models, HEM, HF, and D-HEM, are similar and agree well with the
measurements. The HEM predicts the highest pressure plateau (about 8.9 MPa) and
smallest mass outflow rate while the D-HEM predicts the lowest pressure plateau
(about 8.6 MPa) and largest mass outflow rate. The HEM tends to overestimate the
plateau pressure due to the underestimation of mass outflow rate. In the present
case, the HF model appears to match the measurement best.

Figure 9b shows the results for Test 20 with a 9.0 mm nozzle. The experimentally
observed pressure plateau is increased to about 9.4 MPa, otherwise the trends are
very similar to those in Figure 9a.

In Figure 9c for Test 17 with a 4.5 mm nozzle, the simulated pressure plateau
matches well with the measured values for the first 0.06 s. Later, the measured
pressure is affected by pressure waves present in the pipe before the disk rupture.
Since the pressure drop is smaller for a smaller-diameter nozzle, the disturbance is
relatively more significant in this case.

In Figures 9a, 9b and 9c, we observe a small intermediate pressure plateau
between the initial pressure and the main plateau. This is related to the gradual
opening of the triple-layer rupture disk. The effect is most pronounced for the small-
diameter nozzle, most likely due to the smaller flow rate. To account for the reduced
flow area in Tests 17 and 20, the mass flux at the intermediate plateau is calculated
using (1), and an area scaling is calculated as the fraction of the intermediate mass
flux and the main plateau mass flux. For Test 17, a reduced area fraction of 0.371 is
applied for the initial 9.8 ms of the simulation. For Test 20, a reduced area fraction
of 0.295 is applied for the initial 6.7 ms of the simulation. For Test 18, the effect of
the gradual opening is ignored.

4.1.4. Comparison of orifice experiments and 1D CFD simulations
For the simulations of the tests with orifices, we employ contraction coefficients as

described in Section 3.6. The employed coefficients are given in Table 4. In addition,
for Test 16, a reduced area fraction of 0.43 is applied for the initial 18.09 ms. For
Test 21, a reduced area fraction of 0.35 is applied for the initial 7.51 ms. Test 13 was
conducted using a single-layer rupture disk not prone to the gradual opening of the
triple-layer disks.

Figure 10a shows the measured and calculated pressure for Test 13 with a
12.7 mm orifice. In this case, the calculated contraction coefficient, CC, has a value
of 0.75. It can be seen that all the three restricted-flow models show good agreement
with the measured pressure. The HF model matches the measurement best, while
the HEM predicts a slightly higher pressure plateau and the D-HEM predicts a slightly
lower one. As can be seen in Figure 10b, the trends are similar for Test 21 with a
9.0 mm orifice.

In Figure 10c, we compare the measured and simulated pressure for Test 16 with
a 4.5 mm orifice. In this case, the procedure in Section 3.6 to estimate the contraction
coefficient, CC, yields a value of 0.74. One can see that all the models overestimate
the plateau pressure, and that the HF and D-HEM give almost the same results.
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(b) Test 20, nozzle diameter 9.0 mm.
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(c) Test 17, nozzle diameter 4.5 mm.

Figure 9: Measured (full lines) and simulated pressure (dashed lines) at x = 0.08 m for Tests
18, 20 and 17 with nozzles.

4.1.5. Analysis of restricted-flow models
We will now further analyse the models presented in Section 3.4. In doing so, we

consider the pressure jump in the decompression (rarefaction) wave between the
initial pressure and the first pressure plateau. The flow resulting from this pressure
drop is regarded as steady. The initial temperature and pressure at the outlet, as
well as the observed pressure-plateau value are given in Table 3. (The values given in
Table 2 are averages for the whole pipe.) Using the GERG-2008 EOS and the Euler
compatibility equation (1), we calculate the mass flow rate in the pipe integrating
(2) isentropically using an adaptive Gauss–Legendre quadrature, and convert it to
an equivalent mass flux through the nozzle or orifice. This will be used as the
experimental value in the following discussion. Further details on the calculation of
the mass flow rate and the experimental uncertainty are given in Appendix D.

In order to illustrate the state where the flow chokes in the orifice or nozzle at the
outlet, Figure 11 shows the isentropic path from the pressure plateau after the first
decompression wave down into the metastable region for frozen flow. The initial
state is given by the plateau pressure and the initial entropy (P1, s0). The isentrope
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(b) Test 21, orifice diameter 9.0 mm, contraction
coefficient CC = 0.74.

0.0 0.1 0.2 0.3
t (s)

10.5

11.0

11.5

12.0

12.5

P 
(M

Pa
)

Exp.
HEM
HF
D-HEM

(c) Test 16, orifice diameter 4.5 mm, contraction
coefficient CC = 0.74.

Figure 10: Measured (full lines) and simulated pressure (dashed lines) at x = 0.08 m For
Tests 13, 21 and 16 with orifices.

Table 3: Mass flow estimated from experimental pressure drop using the x = 0.08 m sensor.
The mass flux is j = ṁ/Ares.

Test no.
T0
(°C)

P0
(MPa)

P1
(MPa)

ṁ
(kg/s)

j
(t/(s m2))

13 (orifice) 24.6 12.77 9.61 8.592 67.8
16 (orifice) 24.4 12.17 11.58 1.600 100.6
17 (nozzle) 25.2 12.40 11.74 1.807 113.6
18 (nozzle) 25.1 12.41 8.81 10.072 79.5
20 (nozzle) 22.7 11.40 9.40 5.515 86.7
21 (orifice) 22.0 11.50 9.94 4.208 66.2
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Figure 11: Restricted-flow calculation for Tests 17, 18 and 20: Isentropic path assuming
frozen flow. The choke point (dot) calculated from observed mass flux for each experiment.
GERG-2008 spinodal and superheat limit calculated from CNT are included.

is mapped down to the pressure where the single-phase (stable or metastable) flux,
calculated using (8) and the local density, equals the flux calculated across the
decompression wave and given in Table 3. For the two largest nozzles, Test 18 and
20, the process ends at a pressure between the saturation curve and the SHL curve.
This indicates that the process departs from thermodynamic equilibrium.

For Test 17, however, the flow predicted to choke below the SHL curve, which is
lower than expected. The most likely explanation for this result is the uncertainty in
the calculated flow rate, due to the small pressure difference between P0 and P1. As
little as a 0.035 MPa increase in P1 is enough for Test 17 to terminate at the SHL.

For the orifice geometry, the contraction coefficient is calculated using the method
outlined in Section 3.6, and it is listed along with the mass fluxes predicted using the
HEM, D-HEM and HF models in Table 4. The relative deviation to the experimental
values are shown in parenthesis.

As the flow apparently chokes below the SHL curve for Test 17, D-HEM agrees
best with that experiment, with an underprediction of the mass flux of 5 %. For the
largest nozzles, Test 18 and 20, the HF model gives the best prediction of the mass
flux, with an overprediction of 1 %. D-HEM overpredicts by 6 % for Test 18 and 7 %
for Test 20, while HEM underpredicts by 4 % and 3 %, respectively.

For the small orifice (Test 16), the predicted mass fluxes are off by more than
−20 % for all models. For the largest orifice, the HF model gives the best result, only
underpredicting the mass flux by 1 %. For the medium orifice (Test 21), the HEM
model agrees well with the experimental flux (less than 0.5 % deviation), while the HF
and the D-HEM model overpredict the flux by 5 % and 10 %, respectively.

4.2. Mass flux through a nozzle

We now consider the mass flux of dense-phase CO2 through a converging-
diverging nozzle, using the data of Banasiak and Hafner (2013) as reference. Figure 12
shows a comparison between the experimental data and values calculated using the
HEM, D-HEM and HF models. The experimental data are taken at different temper-
atures and pressures, and are not straightforward to plot two-dimensionally. To
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Table 4: Calculated contraction coefficient and predicted mass flux (tonnes per square metre
and second). Relative deviation to experimental data in parenthesis.

Test no.
CC
(–)

jHEM

(t/(s m2))
jD-HEM

(t/(s m2))
jHF

(t/(s m2))

13 (orifice) 0.75 63.9 (−6 %) 70.1 (3 %) 66.8 (−1 %)
16 (orifice) 0.74 74.8 (−26 %) 79.6 (−21 %) 78.1(−22 %)
17 (nozzle) 1.0 101.6 (−11 %) 107.7 (−5 %) 106.1 (−7 %)
18 (nozzle) 1.0 76.1 (−4 %) 84.5 (6 %) 80.3 (1 %)
20 (nozzle) 1.0 83.7 (−3 %) 92.5 (7 %) 87.6 (1 %)
21 (orifice) 0.74 66.4 (0 %) 73.0 (10 %) 69.3 (5 %)

Table 5: Relative absolute errors for model predictions compared to Banasiak and Hafner
(2013) experimental data.

Model
Rel. Abs. Err. (All data)

(%)
Rel. Abs. Err. (Low press data)

(%)

HEM 7.8 17
D-HEM 2.5 5.8
HF 5.4 8.2

get most of the information into one graph, we have plotted mass flux indirectly
against the inlet entropy. The x-axis variable is calculated as the saturation pres-
sure corresponding to the stagnant inlet entropy, P = Psat (s (T0, P0)). Banasiak and
Hafner estimated the experimental uncertainty to be ±0.5 K for the inlet temperat-
ure, ±30 kPa for the pressure and ±0.5×103 kg/s for the mass flow rate. With these
estimates, error bars have been calculated for the saturation pressure and the mass
flux. In Figure 12, the dashed line separates data with an inlet pressure above or
below 8.2 MPa.

We observe that the HF model is in good agreement with the experimental data,
with the exception of some points with low inlet pressure and low inlet entropy
where the mass flux is underpredicted. The HEM is seen to predict the mass flux well
for entropies close to the critical point. However, elsewhere, the model underpredicts
the mass flux. This is expected because the distance between the saturation curve
and the SHL is small in this region, and the delay before onset of nucleation is short.
The D-HEM is in very good agreement with the experimental data points above the
grey dashed line. From Table 5 we see that D-HEM outperforms HF both for the
low-pressure data and when all data are taken into account. For the latter case the
mean absolute deviation is 2.5 % for D-HEM versus 5.4 % for HF.

Finally, we consider the experimental data of Hesson and Peck (1958) for saturated
liquid flowing through a converging nozzle. Figure 13 shows a comparison between
the experimentally determined mass-flux data and values calculated using the HEM,
D-HEM and HF models, plotted as a function of the reported saturation pressure of
the experiments. Both HEM and D-HEM are seen to consistently underpredict the
data. With the exception of the data point with the lowest saturation pressure, HEM
and D-HEM give almost the same result, the only difference being the small entropy
production in D-HEM. For the experiment starting at 5.25 MPa, D-HEM predicts

25



4.5 5.0 5.5 6.0 6.5 7.0
PSat (MPa)

40

50

60

70

80

90

j (
t/(

m
2 s

))

HEM
D-HEM
HF
Exp.

Figure 12: Model predictions using HF, HEM and D-HEM, plotted together with the Banasiak
and Hafner (2013) experimental data (Exp.). The experimental data include error bars
calculated using the uncertainties reported by Banasiak and Hafner. The mass flux is
plotted as a function of the saturation pressure calculated from the stagnant inlet conditions,
P = Psat (s (T0, P0)). The GERG-2008 EOS is used for the property predictions. The dashed
grey line separates data based on inlet pressure, below it, all data have an inlet pressure
below 8.2 MPa.
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Figure 13: Model predictions using HF, HEM and D-HEM, plotted together with the Hesson
and Peck (1958) experimental data for saturated liquid states. The GERG-2008 EOS is used
for the property predictions.

choking before the SHL line, leading to a larger mass flux than for HEM. For the other
points, D-HEM chokes after the SHL and the mass flux is slightly lower than for HEM
due to the entropy production.

The HF model overpredicts the mass flux close to the critical pressure. However,
for saturation pressures below 6.25 MPa, it underpredicts the experimental mass
flux. As reported by Hendricks et al. (1972), the mass fluxes in Hesson and Peck
(1958) are higher than expected and there might be systematic errors in the data.
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5. Conclusion

In CO2 processing, transportation and injection systems, compressed CO2 will,
during normal operation or exceptional venting, flow through valves or other restric-
tions. In order to calculate the flow rates and fluid states needed for operational or
safety considerations, there is a need for validated models providing realistic results
without the need for detailed geometry input.

We have experimentally investigated the effect of outlet restriction geometry type
and size on the depressurization of a 41 mm inner-diameter pipe. From an initial
state of 12 MPa and 25 °C, the pipe was depressurized through six sharp orifices and
converging nozzles, made in pairs with 90 %, 95 % and 99 % area reduction.

In our previous full-bore experiment, the pressure in the pipe rapidly decreased
to a two-phase state. The introduction in this work of flow restrictions at the outlet
yielded pressure traces displaying intermediate plateaux at single-phase states, the
number of plateaux and time to empty the pipe increasing for decreasing restriction
diameter. For a given diameter, flow through an orifice yielded higher pressure-
plateau levels than for flow through a nozzle. This is consistent with the orifice
resulting in a smaller practical cross-sectional area (vena contracta), which in turn
gives a smaller mass flow rate.

Our current setup does not allow the direct measurement of the mass flow rate.
However, by exploiting the fact that the state in the pipe was single-phase, and
by assuming a quasi-steady state for each pressure plateau, we could calculate
the mass flow rate based on the measured pressure. Here, we employed the Euler
compatibility equation, which is commonly used for hydraulic-shock calculations,
and the GERG-2008 EOS.

Three different models were used to calculate the flow through the restrictions.
All the models were formulated in a manner not requiring integration over the actual
geometry, but only using the upstream state and the minimum cross section of
the restriction. The models are therefore valid when the influence by friction on
the flow rate can be assumed to be small. This is useful in simulations where the
spatial dimension of the restriction is not resolved (long pipes) or for cases where
the geometry is partly unknown.

In addition to the classical HEM and HF model, we propose an augmented HEM,
allowing for delayed phase transition, labelled D-HEM. The model assumes a process
where there are no bubble nuclei before reaching the SHL calculated by classical
nucleation theory. After reaching the SHL, the state is transitioned to full equilibrium
at constant pressure, including entropy production during phase transfer.

We compared the three models to experimental data for flow through nozzles by
Hesson and Peck (1958) and Banasiak and Hafner (2013). The mass fluxes reported
by Hesson and Peck are significantly larger than those predicted by the models. This
is an inconsistency that has also been noted by other authors. For the Banasiak and
Hafner experiments we found the D-HEM to be the best model among those tested,
with a relative absolute error of 2.5 % for the predicted mass flux. This indicates
that the approach behind D-HEM is viable and should be considered in the further
development of simulation tools for compressed CO2.

Another promising avenue for further research is to apply the D-HEM in the
assessment of running ductile fracture in CO2-transportation pipelines. We gave ex-
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amples of typical plots of pressure as a function of decompression-wave speed used
in such assessments, showing that D-HEM is applicable and gives lower pressures
than HEM, which is known to give too high pressures and therefore the wrong load
on the steel structure.

In the sharp-orifice geometry, the actual flow throat area will be smaller than
the minimum physical area. We accounted for this by calculating a contraction
coefficient employing a steady-state force balance, an approach generalized from
that of Bragg (1960).

The above models for flow through restrictions were implemented in our nu-
merical workbench for 1D, transient, multiphase flow, and we compared simulated
and measured pressures. Good results were obtained for all models, with the best
agreement obtained using the HF model. For the pressure-plateau, the HEM gave the
highest level, consistent with the lowest mass flow rate, followed by the HF model
and D-HEM. Our results for the decompression through orifices indicate that the
calculated contraction coefficient is uncertain. Further experimental and modelling
efforts are needed here.

A subject for future work would be to study cases with different initial fluid
states, so that the isentropic decompression path hits the two-phase region at a low
pressure and temperature, where heterogeneous nucleation needs to be accounted
for.

Another topic for further work would be to modify the experimental setup and
procedure in order to have a more uniform initial condition.
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Appendix A. Experimental data

The experimental data used in this study are attached as a supplementary file.

Appendix B. Calculation of choking conditions for steady-state HEM

This section outlines the calculation of the choking condition of the HEM model
under a steady-state assumption. The case of the HF model is given in the original
article (Henry and Fauske, 1971). How to solve the D-HEM model is indicated in
Section 3.5.

In steady state, the HEM without source terms reduces to three flow constants:
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• constant mass flow rate: ṁ,

• constant entropy: s,

• constant energy: h+ 1
2u

2.

The energy equation, subject to constant entropy, will give u = u(p). Under the
same conditions, the speed of sound will be a function of pressure, c = c(p), and
solving for u = c is a single-variable problem in pressure. One complication is the
discontinuity in speed of sound at the phase boundaries. This is seen in Figure 7
where u and c are plotted as functions of p for one test condition. Due to the
discontinuity, the flow will often choke on the saturation curve.

The speed of sound is given by

c =
√
∂p
∂ρ

∣∣∣∣
s
. (B.1)

Under the HEM assumption of chemical equilibrium (µg = µℓ), this equation becomes
constrained. This can be accounted for by defining the following equation system
where entropy (scons) and mass density (ρcons) are known,

G (scons, ρcons,X) = 0, (B.2)

where

G =


µg − µℓ

1
z
ρg
+ 1−z

ρℓ

− ρcons

s − scons

 (B.3)

and

X =

TP
z

 , (B.4)

with the overall entropy given as s = zsg + (1− z)sℓ.
Differentiating the equation (B.2) with respect to ρcons we get

∇XG
∂X
∂ρcons

+ ∂G
∂ρcons

= 0, (B.5)

where ∇XG is the Jacobian matrix of G with respect to X and ∂G/∂ρcons = [0,−1,0]⊺.
Solving for ∂X/ρcons = [∂T/∂ρcons, ∂P/∂ρcons, ∂z/∂ρcons]⊺, we obtain ∂P/∂ρ, and
the speed of sound can be calculated. The speed of sound is calculated using an
analytical Jacobian matrix and the discontinuity when entering the two-phase region
is illustrated in Figure 7.

Appendix C. Calculation of the flow contraction coefficient at orifices

The coefficient of contraction, defined in Section 3.6, establishes the actual flow
area and must be known when calculating the outflow through a nozzle or orifice. In
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Figure C.14: Generalized orifice flow with notation and forces on the fluid, adapted from
Benedict (1971).

this work we have utilized an isentropic force balance as described by Bragg (1960,
Eq. (5)) and Benedict (1971, Eq. (2)). The area and the forces acting on the fluid are
illustrated in Figure C.14.

The force balance accounting for inlet momentum and back pressure is

F +Apipeppipe −
(
Apipe −Ares

)
ppipe = Avcpvc + (Ares −Avc)pamb + ṁ

(
uvc −upipe

)
,

(C.1)
where F is the force defect described by the integral

F =
∫ Apipe

Ares

(
ppipe − pw

)
dAw , (C.2)

where the subscript w refers to the wall, and F can be integrated using a Gauss–
Legendre quadrature with error control. Dividing (C.1) by Ares, and setting F∗ =
F/Ares we get,

F∗ + ppipe − pamb +
(
pvc − pamb

)
CC = CCρvcuvc

(
uvc −upipe

)
, (C.3)

which yields

CC =
F∗ + ppipe − pamb

pvc − pamb + ρvcuvc
(
uvc −upipe

) . (C.4)

Bragg (1960, Eq. (15)) proposed that the mass velocity distribution on the stream
tube boundary upstream of the orifice could be described as

jw = kCCjvcAres/Aw , (C.5)

where

k =
√√√√ 2
CC,i

− 1

C2
C,i

, (C.6)

and
CC,i =

π
π + 2

. (C.7)
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pw can then be found implicitly by solving

jw = ρ
(
spipe, pw

)
u
(
spipe, pw

)
, (C.8)

where the steady-state energy equation (Bernoulli) for isentropic flow is used to
determine the velocity uw :

hpipe +
1
2
u2

pipe = hw
(
spipe, pw

)
+ 1

2
u2
w . (C.9)

We use a bracketing solver to solve the equation (C.8).
To solve for the contraction coefficient we use a successive substitution approach as
follows.

• Guess CC = 1.1CC,i

• Set CC,old = 1

• Calculate critical state based on upstream conditions. Output: pvc, uvc, ρvc

• Iterate until ∥CC − CC,old∥/CC < 10−10:

– Set CC,old = CC

– Find F∗ by integrating (C.2)

– Calculate CC from (C.4)

Appendix D. Experimental uncertainty of mass flow rate

The mass flow is calculated as

ṁ = (uρ)P1
APipe (D.1)

with

u(P) =
∫ P=P1

P=P0

dP
ρc
. (D.2)

The pressure measured at the position closest to the outlet, at x = 0.08 m, by the
sensor PT201 is used to determine the initial pressure, P0, and first pressure plateau,
P1. The temperature measured at the position x = 1.6 m is used for T0.

The value of P1 is obtained by averaging the measurement between the time when
the pressure plateau stabilizes and the time when a dip reaches about the middle of
the pressure plateau, as indicated in Figure D.15. This dip is a result of the recoil
of the pipe: When depressurization occurs, a wave travels in both the fluid and the
stainless-steel pipe towards the closed end. The wave travelling in the steel has a
speed of about 5800 m/s. After it reaches the end, the wave is reflected and travels
back in the fluid, as seen by the dip.

The values of P0 and T0 are stable, thus we focus on the measurement uncertainty
caused by the value of P1. We employ the min-max method to estimate the uncer-
tainty of the mass flow rate ṁ. The values of P0, T0, and P1 are listed in Table D.6,
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Figure D.15: Averaged plateau pressure P1 for the calculation of mass flow rate in Test 18.

Table D.6: Initial pressure P0, temperature T0, and pressure plateau P1 with differences to
the maximum and minimum values.

Test no.
T0
(°C)

P0
(MPa)

P1
(MPa)

δP1,max
(MPa)

δP1,min
(MPa)

13 24.6 12.77 9.61 0.14 0.09
16 24.4 12.17 11.58 0.07 0.07
17 25.2 12.40 11.74 0.09 0.06
18 25.1 12.41 8.81 0.10 0.12
20 22.7 11.40 9.40 0.06 0.10
21 22.0 11.50 9.94 0.06 0.10

with the differences to the maximum and minimum values δP1,max = P1,max − P1 and
δP1,min = P1 − P1,min.

The mass flow rate for the maximum and minimum values of the pressure plateau
can be expressed as

ṁmin = u
(
P0, P1 + δP1,max

)
ρ
(
P0, P1 + δP1,max

)
APipe, (D.3)

ṁmax = u
(
P0, P1 − δP1,min

)
ρ
(
P0, P1 − δP1,min

)
APipe. (D.4)

The measured mass flow rate can be expressed with the absolute uncertainty,
ṁ± δṁ, as

δṁ = max (ṁmax − ṁ, ṁ− ṁmin) . (D.5)

Since the data are not normally distributed, we use the maximum difference to ṁ to
be conservative. The relative uncertainty can be then expressed as δṁ

ṁ . The absolute
and relative uncertainties of the mass flow rates are listed in Table D.7.
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