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Abstract. We start from the most common formulation of the six-equation two-fluid model, from which we remove the non-
conservative temporal term using a equivalent formulation derived in the literature. We derive a partially analytical, formally
path-consistent Roe scheme, using the flux-splitting method.

We first expose the model in detail, and split the flux into a convective part, a pressure part, and a non-conservative part.
Then, we derive an analytical Jacobian matrix of the fluxes, which allows the model to be written in quasilinear form. Finally,
we explain the approach used to express formulas for the Roe-averaging of the variables. Only a simplified Roe-condition on
the pressure remains. It can be fulfilled numerically, given any equation of state.

In the present article, we do not show the full results, but rather explain the approach. The full results will be explained at
the conference.
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INTRODUCTION: THE MODEL

The six-equation two-fluid model [1, 3] is a well-studied two-phase flow model. In its most common formulation,
without regularising term to force hyperbolicity, it takes the general form

(1)
∂U
∂ t

+
∂F(U)

∂x
+ Ã(U)

∂ Ṽ(U)
∂ t

+ B̃(U)
∂W̃(U)

∂x
= S(U).

As described in [1], the non-conservative temporal term ∂tṼ presents technical difficulties in deriving fully upwind
schemes, as well as schemes that are formally path-consistent with respect to the definitions of the non-conservative
products of the system.

In this work, we address this difficulty by taking advantage of a mathematically equivalent formulation, derived in
[1], that eliminates the non-conservative temporal term. The system of equations is written

(2)
∂U
∂ t

+
∂F(U)

∂x
+B′(U)

∂W(U)
∂x

= S(U),

where the variables vector consists of the conserved quantities for each of the two phases (mass, momentum and total
energy)

(3) U =


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=
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ρgαg
ρ`αl
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 .



Further, the conservative flux F(U) is split into a convective part and a pressure part, such that

(4) F = Fc +Fp with Fc(U) =



ρgαgvg
ρ`αlvl
ρgαgv2

g
ρ`αlv2

l
ρgαgvg

(
eg + 1

2 v2
g
)

ρ`αlvl
(
e` + 1

2 v2
l

)

 and Fp(U) =


0
0
0
0

αgvg p
αlvl p

 .

The term B′(U) ∂W(U)
∂x in (2) originally contains the non-conservative contributions of the fluxes, to allow using

the formally path-consistent approach of Parés [5]. However, for simplicity of the analysis, B′(U) is modified to also
contain the pressure part of the flux Fp(U), to give the system analysed in the present paper

(5)
∂U
∂ t

+
∂Fc(U)

∂x
+B(U)

∂W(U)
∂x

= S(U),

where

(6) B(U) =


0 0
0 0

αg 0
αl 0

αgvg−ηαgαl (vg− vl) ηρ`αgc2
`

αlvl +ηαgαl (vg− vl) ηρgαlc2
g

 and W(U) =
[

p
αgvg +αlvl

]
,

using the abbreviation

(7) η =
p

ρgαlc2
g +ρ`αgc2

`

.

Finally, the source term S(U) can represent gravity or phase interactions. Note that this formulation does not include
regularising terms making the model hyperbolic, for which a number of possibilities exists in the literature. The
numerical framework we present here may be extended to include such terms, following for instance the approach in
[7].

QUASILINEAR FORM

In order to derive a Roe scheme [2], we first rearrange the model in the quasilinear form:

(8)
∂U
∂ t

+A(U)
∂U
∂x

= S(U),

where

(9) A(U) =
∂Fc

∂U
+B(U)

∂W
∂U

.

Towards this aim, we first derive the analytical Jacobian matrix of the flux. A natural decomposition of the problem
is to treat the convective part Fc separately from the rest of the flux, mainly involving the pressure, B(U) ∂W(U)

∂x . The
resulting Jacobian matrices will be called respectively Ac and Ap.

The matrix Ac is

(10) Ac =
∂Fc

∂U
=


0 0 1 0 0 0
0 0 0 1 0 0
−v2

g 0 2vg 0 0 0
0 −v2

l 0 2vl 0 0
−vgEg 0 Eg 0 vg 0

0 −vlEl 0 El 0 vl

 where Eϕ = eϕ +
1
2

v2
ϕ .



In order to derive the pressure part of the flux Jacobian Ap, there is a need for the derivative of the non-conservative
flux variables W with regard to the variable vector U

(11) M =
∂W(U)

∂U
= R−1


ζlβg (vg− vl)αlβg−Rvg/ρg
ζgβl (vl− vg)αgβl−Rvl/ρl
−ζlΓgvg R/ρg− (vg− vl)αlΓgvg
−ζgΓlvl R/ρl− (vl− vg)αgΓlvl

ζlΓg (vg− vl)αlΓg
ζgΓl (vl− vg)αgΓl



T

,

where

(12)
βg = c2

g−Γg

(
eg + p

ρg

)
+ 1

2 Γgv2
g, ζg = ρgc2

g−Γg p, R = αgζl +αlζg,

βl = c2
l −Γl

(
el +

p
ρl

)
+ 1

2 Γlv2
l , ζl = ρlc2

l −Γl p.

We define

(13) Ap = RB(U)
∂W(U)

∂U
= RBM, hence A = Ac +R−1Ap.

DERIVATION OF THE ROE SCHEME

The Roe scheme requires the construction of a matrix at each cell interface. It is the Jacobian matrix A evaluated at a
particular average of the variables in the neighbooring cells. This will be called Roe averaging. It will be denoted in
the following by Â. It has to satisfy some conditions [2, 6, 7, 8], amongst which one is problematic:

R1: Â
(
UL,UR

)(
UR−UL

)
= Fc(UR)−Fc(UL)+B

(
UL,UR

)(
W(UR)−W(UL)

)
.

The matrix B is a property of the mathematical solution rather than the numerical method [1], and it is assumed that it
is known in the present work.

Similarly to what was done in the derivation of the Jacobian matrix, we can split the problem into a convective part
and a pressure part, such that

(14) Â = Âc + R̂−1Âp.

The Roe condition R1 can subsequently be split in two, now reading

Âc
(
UL,UR)(UR−UL)= Fc(UR)−Fc(UL),(15)

R̂−1Âp
(
UL,UR)(UR−UL)= B

(
UL,UR)(W(UR)−W(UL)

)
.(16)

The derivation of the Roe matrix for the convective part Âc is already well known, using the parameter vector
approach of Roe [2]. Specifically, Toumi [3] gives the parameter vector for this case. On the other hand, this method is
impractical for the pressure part. Instead, we follow a similar strategy as in [4]. It consists in reducing the partial Roe
condition (16) on Âp to two simpler ones. One will concern the pressure average, and the other the mixture velocity
average. This opens for the possibility to construct a partially analytical Roe matrix for any equation of state.

From the averaging of (13) comes Âp = R̂BM̂. Here we remind that B is known prior to the numerical method
derivation, and does therefore not need Roe averaging. Insertion of Âp into (16) gives

(17) M̂
(
UL,UR)(UR−UL)= W(UR)−W(UL),

which results in a system of two equations. The matrix M̂ is the matrix M evaluated for specific weighted averages of
the variables in the neighbouring cells, which we will call Roe-average and denote x̂. For example, v̂l is an average of
vL

l and vR
l . We will use the system in question to define the Roe-averages of all the needed variables.

First, we show that the first line of (17) is fulfilled if we use a Roe-average of the pressure differential

(18) R dp = ζl

(
ζg

ρg
−Γgeg

)
du1 +ζg

(
ζl

ρl
−Γlel

)
du2 +ζlΓg d(u1eg)+ζgΓl d(u2el) ,



as well as

(19) u5 = u1eg +
1
2

u1v2
g and u6 = u2el +

1
2

u2v2
l ,

and if we suppose that the velocities follow the usual Roe-averaging, weighted by
(√

ρϕ αϕ

)L,R.
The condition expressed by the first line of (17) is then reduced to the condition found by Roe-averaging (18)

(20) R̂(pR− pL) = ζ̂l

(
ζ̂g

ρg
− Γ̂gêg

)(
(ρgαg)R− (ρgαg)L)+ ζ̂g

(
ζ̂l

ρl
− Γ̂l êl

)(
(ρlαl)R− (ρlαl)L)

+ ζ̂lΓ̂g
(
(ρgαgeg)R− (ρgαgeg)L)+ ζ̂gΓ̂l

(
(ρlαlel)R− (ρlαlel)L) .

Second, the same process is applied to the second line of (17). It is more involved, therefore we only show the
results. We keep assumptions on the Roe-averaging of vϕ and we make further assumptions on the shape of the Roe-
averages of αϕ and ρϕ . Further, we define some other averaging formulas for ᾰ and ρ̆ which will be made explicit at
the conference. Then we show that this second line will be reduced to the condition

(21) ᾰgα̂l

(
ζ̂g

ρg

)(
(ρg)R− (ρg)L)− ᾰlα̂g

(
ζ̂`

ρl

)(
(ρl)R− (ρl)L)

+ ρ̆gᾰgα̂lΓ̂g
(
(eg)R− (eg)L)− ρ̆lᾰlα̂gΓ̂l

(
(e`)R− (e`)L)= 0.

Further, (20) and (21) reduce to the same condition by using the appropriate expression for ζ̂ϕ

ρϕ

(22) pR− pL =
ζ̂g

ρ̂g

(
ρ

R
g −ρ

L
g
)
+ ρ̆gΓ̂g

(
eR

g − eL
g
)

=
ζ̂l

ρ̂l

(
ρ

R
l −ρ

L
l
)
+ ρ̆lΓ̂l

(
eR

l − eL
l
)
.

This last condition cannot be fulfilled analytically for a general equation of state. In case of non-analytical equation
of state, or if its expression is too complicated, (22) will be the only condition that will be solved numerically. The
approach presented in [4] can be used for example.
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