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Abstract

We take a look at the complex domain of sliding-block puzzles, which offers
significant challenges for the field of artificial intelligence. By analysing the
properties of this domain, as well as similar domains where more published
literature exists, we develop new domain-specific methods in an attempt
to overcome the combinatorial explosion of this domain. We implement a
sliding-block puzzle solving program that uses the traditional search algo-
rithms BFS, A* and IDA* in combination with our domain-specific enhance-
ments. We evaluate the performance of our program against a state-of-the-
art implementation of BFS, and show that we can reduce the search work
by several orders of magnitude using domain-specific enhancements. We
conclude our work by suggesting new techniques and areas that can be re-
searched in order to further combat the complexity of solving sliding-block
puzzles.
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Chapter 1

Introduction

1.1 Goal

The main goal of this project is to study existing techniques for solving
sliding-block puzzles, develop new ideas for solving such puzzles and incor-
porate these ideas into a program that solves instances of such puzzles. We
will then measure the performance and capabilities of our program against
the current state-of-the-art software within the domain.

In order to accomplish this goal, the following steps will be done:

First, we will conduct a literature study, where we will discover how others
have attempted to solve sliding-block puzzles. In addition, we will look into
literature to see how similar single-agent puzzles have been solved.

We will study our problem domain. We will attempt to find properties of
the domain, and we will attempt to develop new methods that make use of
these properties in order to more efficiently solve sliding-block puzzles.

We will then develop a program that solves sliding-block puzzles. We will use
ideas we have found during the literature study, as well as the new methods
we have developed during the analysis of the problem domain.

We will select several puzzles from available computer implementations of
sliding-block puzzles, and from puzzles mentioned in literature. These will
form a test suite. The purpose of the test suite is to evaluate the new methods
we have developed. The test suite will measure the efficiency of our program
in terms of the number of puzzles solved, partial progress made on puzzles
we don’t solve, the amount of computational resources spent in order to find
a solution and the length of the solution we found. We will measure each
improvement in our program to find out how much it contributed towards

11



12 CHAPTER 1. INTRODUCTION

solving new puzzles and reducing the computational resources needed in
order to solve them.

At last, we will document this process in this report, and evaluate the out-
come.

1.2 Background and motivation

Solving sliding-block puzzles represent a significant challenge. Similar, but
less complex problems have been attempted solved using traditional meth-
ods, like exhaustive search.

These methods fail on more complex domains. We consider sliding-block
puzzles to be a complex domain. We hope that research done on complex
domains like this can enhance our ability to solve single-agent problems and
help develop new methods that can be used in the field of artificial intelli-
gence, and be a benefit for real-world problems.

Similar puzzles, like the 15-puzzle, Sokoban and Rubik’s cube have been
researched for many years. However, no research has been done on sliding-
block puzzles using other methods than exhaustive search. We think that
this domain deserves to be worked on, as we think this problem is both fun,
interesting and hard.

1.3 Organisation of this report

Chapter 2 gives a description of the domain of sliding-block puzzles, what
kinds of puzzles we are trying to solve, properties of the problem, suggestions
on how to solve puzzles, list of computer implementations and a description
of previous solving efforts.

In chapter 3 we give descriptions of some similar problems, the efforts that
have gone into solving them, and properties of these problems.

Chapter 4 is a discussion of different algorithms and methods and how they
can be applied to sliding-block puzzles.

In chapter 5 we describe the resulting implementation of the sliding-block
puzzle solver.

Chapter 6 contains the results from running our solver on the chosen puzzles,
and an evaluation of the results.

In chapter 7 we list some areas in this domain where further research can be
done, and we come with suggestions for future improvement.



Chapter 2

Sliding-block puzzles

2.1 Description

Figure 2.1: A sliding-block puzzle

A sliding block puzzle consists of blocks of possibly different sizes. A block
consists of at least one or more connected unit squares. A block can slide in
one of the 4 directions (up, down, left, right) if there is enough space. The
objective is to reach a certain end-configuration. This end-configuration can
require anywhere from one block to all blocks in the puzzle to be in a certain
position. Often, the goal is to move one certain piece to a final position.
Figure 2.1 shows the Forget-me-not puzzle, where the objective is to move
the 2× 2 block to the middle of the bottom row.

The first known sliding-block puzzle was the 15-puzzle, which was invented
by Noyes Chapman, and became popular in 1880 [21]. The puzzle consists of
15 square tiles with the numbers from 1 to 15 on them within a 4x4 frame.
The purpose of the puzzle is to arrange the numbers from 1-15 in order.

A puzzle named Pennant puzzle, which is a more typical example of the kind

13



14 CHAPTER 2. SLIDING-BLOCK PUZZLES

puzzles we are going to look at, was patented in 1907. It contains blocks
of different shapes, including 1 × 1, 2 × 1 and 2 × 2. Figure 2.2 shows the
starting configuration and the goal configuration of the Pennant puzzle.

Figure 2.2: The Pennant puzzle. The left figure shows the starting configu-
ration. The right figure shows the solved configuration.

Hordern [6] gives four possible ways for defining a transition from one posi-
tion to another.

1. Slide one piece only in any direction or combination of directions. The
piece may be slid any permissible distance without lifting and without
rotating. See figure 2.3 a) for an example of moving a piece around a
corner.

2. Slide one piece only in any one direction. The piece may be slid any
permissible distance without lifting or rotating. See figure 2.3 b).

3. Slide any number of pieces together as a group without lifting or rotating.
See figure 2.3 c) for an example where two pieces move together.

4. Slide one piece in any orthogonal direction, one unit (the same distance
as the side of one 1x1 square). See figure 2.3 d).

Throughout in this report we will use the terms move and step when we
mean alternatives 1 and 4, respectively. Moves are most commonly used,
and is used by the implementations mentioned in this chapter. We will use
steps in this project.
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Figure 2.3: Different ways to define a move

2.2 Variants

Some variants will be mentioned here, all of which are specializations of the
main definition.

2.2.1 n×m− 1-puzzle

This puzzle takes place in a grid of size n×m. There are n×m−1 numbered
tiles. The objective is to rearrange the numbered tiles so they appear in
increasing order.

The 15-puzzle is a special case of this puzzle. Common variants used in
research are the 14-puzzle (3 × 5), the 19-puzzle (4 × 5) and the 24-puzzle
(5× 5). Figure 2.4 shows a solved configuration of the 15-puzzle.

Figure 2.4: The end-configuration of the 15-puzzle

2.2.2 Rush Hour

The Rush Hour puzzle is a variant with additional constraints. Each block
can only move either horizontally or vertically The goal is to move a partic-
ular block out of the grid via a gap in the wall.

This puzzle has been released as a toy. In these versions, the board size is
6 × 6 and the blocks are 1 × 2, 2 × 1 (cars) or 1 × 3, 3 × 1 (trucks). The
block’s movement direction is the same as the direction they extend in.
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Figure 2.5 shows an example instance of Rush Hour.

Figure 2.5: A puzzle of Rush Hour. The objective is to slide the red car out
of the gap in the right wall.

2.3 Implementations of sliding-block puzzles

In this section, we will mention some implementations of sliding-block puz-
zles, both in form of computer programs, version playable via web pages and
puzzles released as toys.

2.3.1 Klotski

Klotski is one of many games in the Microsoft Entertainment Pack for Win-
dows, released in 1990. It contains 24 levels. All levels have one master block
inside an inner frame. This frame has one or more barriers. A barrier may
only be removed if all sections of a barrier has been adjacent to some part of
the master block at some time. The destination square of the master block
is always in the area outside the inner frame.

2.3.2 Supersliders

Supersliders contained around 50 puzzles, but it is no longer available. Some
of these puzzles can be found on the Brainyday website [23]. Also, most of the
remaining puzzles from that game can be found at the Puzzleworld website
[22].
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2.3.3 Bricks

Bricks [19], originally programmed by Andreas Rottler, consists of 7 main
games with 48 levels each, bimonthly competitions since 1998 (over 110 lev-
els), in addition to at least 6 fan-made games with 48 levels each (Custom
Bricks series and Bricks Holiday series). Bricks adds a multitude of new
elements to the standard ones. See figure 2.6 for a screenshot of the level
Nostalgy containing all the element types available in the game1. Some new
elements include magnets that stick to each other, keystones that convert
blocked squares into blocks and holes that destroy blocks.

Figure 2.6: The puzzle Nostalgy from Bricks VI.

2.3.4 Physical variants

Hordern [6] contains a catalogue of more than 270 puzzles. The majority of
these puzzles are of the sliding-block type, but a few other types are included.
Most, if not all of these have been released as toys.

1For an interactive tutorial of all elements, see the following page on the Bricks website:
http://www.bricks-game.de/html/tutor0.html
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2.4 Definition of our problem domain

Some of the computer implementations mentioned in section 2.3 support
extra elements. If we were to support all of these, our implementation (es-
pecially the move generator) would be very complex

The domain of the Bricks computer game is very complex and out of scope
for this project. The generalised problem without any of the special elements
from Bricks can be shown to be PSPACE-complete. The implementation,
especially the move generator, would be very complex if we included full
support for Bricks. The domain we are going to look at is defined as follows:

• Include only regular blocks, frames and space. As we will see in sec-
tion 2.9.2, a puzzle containing only these kind of blocks leads to a very
compact representation in memory, and the search space have some
nice properties when all moves are reversible, see section 2.6.3. Many
of the elements in Bricks lead to irreversible moves. Blocks are allowed
to be concave and to have holes, but a single block must not be disjoint.

• Blocks of the same size and shape are normally considered indistin-
guishable. We will support puzzles containing distinguishable blocks
of the same size and shape. For instance, the master block needs to be
distinguishable from other blocks of the same shape.

• We will not support restricting the movement of blocks to only one of
the horizontal or vertical directions, as in Rush Hour.

• We will use steps when doing a transition from one position to another.
We will show later the search space has some very nice properties when
using breadth-first search.

2.5 Test suite

We have a test suite containing several puzzles. The puzzles are taken from
Bricks (see section 2.3.3), Hordern [6] and the Brainyday website (see sec-
tion 2.3.2). Some are modified slightly to fit our domain. Many puzzles from
Bricks containing special elements were changed to only contain standard
blocks. See appendix A for illustrations. The solvability of some puzzles are
known already, see section 2.9 for an overview.

The puzzles we have picked are chosen such that they are meant to test
different aspects of our program. The list of puzzles and why they are picked
follows.
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• Easy, Forget-me-not: Trivial puzzles that are included to confirm
that our program works.

• Isolation, San, Climb game 15D: Puzzles that are known to be
solvable with BFS. We want to measure the savings we can achieve
using new methods.

• Hyperion, The Devil’s nightcap: Puzzles containing special goal
conditions. The goal condition of The Devil’s nightcap specifies the
position of two blocks, and for Hyperion the requirement is to move
the three vertical blocks one step down. These conditions can be hard
to code into a heuristic function. We want to measure the impact these
puzzles have on the efficiency of a search algorithm using A*.

• American pie, Still easy, Warmup: Easy puzzles with an infea-
sibly large search space. These puzzles will be used to measure the
performance of A* and new methods we can come up with.

• Rose, Triathlon: Medium difficulty puzzles with an infeasibly large
search space. We will use these puzzles to measure the performance of
A* and our new methods, or eventually measure how much progress
we can make if we don’t solve these puzzles.

• Magnolia, Apple, Get ready, Paragon 1FG, Turtle: Difficult
puzzles with an infeasibly large search space. We want to measure
how much progress we are able to make into solving these puzzles. We
do not expect to solve all of these puzzles in this category.

• Chair, Little sunshine, Corona, Thunder, Schnappi, Climb
pro 24, Salambo, Sunshine, Ithaca: All these puzzles have a search
space which is too large to handle for traditional search algorithms. We
want to try out our new methods on these puzzles, and measure how
much progress we can make into solving them. We don’t expect to solve
these puzzles, because of their complexity in terms of search space size
and average branching factor.

As most of these puzzles are part of available computer games with highscore
lists, we know in advance an upper bound on the number of moves needed
to solve the puzzles. However, many of the puzzles had to be changed to fit
our slightly simplified domain. Also, every implementation uses moves while
we use steps to measure the length of a solution. The Bricks website [19]
lists the currently known lowest number of moves needed for each puzzle.
In addition, the lowest number of steps while still using the same lowest
number of moves is listed. This information gives us an upper bound for the
number of steps needed for each puzzle. These are listed in table 2.1. Some
puzzles had to be changed in a way such that the result from the website
is no longer guaranteed to be an upper bound. These are not listed in this
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Table 2.1: Known upper bound for the number of steps
Puzzle name Steps Puzzle name Steps
Easy 33 San 445
Forget-me-not 118 Corona 363
Ithaca 166 Thunder 532
American pie 143 Magnolia 211
Still easy 84 Schnappi 1069
Rose 89 Salambo 1547
Little sunshine 369 Sunshine 713
Chair 149 Paragon 1FG 333
Isolation 280 Warmup 160
Hyperion 176 Get ready 309

table. For some other puzzles where the number of steps at an intermediate
stage of the solution was needed, or no solution length in steps was known,
we have used the number of steps we have achieved ourselves in the game.
This group of puzzles include Isolation, Warmup and Get ready. The upper
bound of San includes steps needed for the full puzzle. Our version consists
only of the first chamber, which is the hard part of the full puzzle. The mean
solution length of the ones we found an upper bound for is 246.

2.6 Formal properties of the problem domain

The problem of determining whether a given sliding-block puzzle has a solu-
tion has been shown to be PSPACE-complete2 [5], even when the objective
is to move a given block to a given place and when all blocks are 1 × 2
rectangles (dominoes).

2.6.1 Search space size

The size of the search space of a particular instance depends on the block
shapes and how many there are of each block shape. Consider a puzzle of
interior size n×m (that is, the frame is not included in this size). Let a state
be defined by the sequence b1, b2, · · · , bk, where bi represents either a block
or one unused 1×1 square and k is the number of blocks plus the number of
spaces in the puzzle. bi, bj are allowed to be equal for i 6= j. Let |bi| be the

2For a definition of the complexity class PSPACE and the notion of PSPACE-
completeness, we refer to chapter 9 of Kleinberg and Tardos [8]
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number of unit squares the block occupies. Let the sequence be such that

k∑
i=1

|bi| = nm.

A position can be constructed from this sequence by the following algorithm:

1. Initialize empty grid of desired size n×m.

2. For each block element bi in the sequence do:

3. a) Find the first empty cell in the grid using linear scan

b) Insert block bi so that its upper left coincides with this empty cell

c) If block is inserted on top of another block, on the frame or outside
the grid, the block sequence is illegal.

A position that is legal according to the procedure above need not be a
reachable position. For instance, the 3×1 block in The Devil’s nightcap (see
figure 2.7) is not able to leave its row; it cannot move up or down since the
puzzle contains only two spaces.

Figure 2.7: "The Devil’s nightcap". a) shows the initial position, b) shows
the requirement for winning the puzzle: The two blocks shown must be at
the indicated positions.

Figure 2.8 shows how to construct a position from a sequence of blocks.

The upper bound for the search space for a given puzzle is therefore the
number of distinct permutations of the sequence. For n elements where
α1, α2, . . . , αk of them are mutually similar, we can use the standard formula
from combinatorics for the number of permutations [18]:

P (n;α1, . . . , αk) =
n!

α1!α2! · · ·αk!
.
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Figure 2.8: Consider a position with spaces (a) and blocks of sizes 1× 1 (b),
1× 2 (c), 2× 1 (d) and 2× 2 (e), each of these is represented by the letter in
parentheses. Let the string deddcdbbbaab represent a position. Starting from
the top left and going right, each diagram shows one block added one at a
time. A block is added at the topmost unused cell (or leftmost if there is a
tie). In the bottom row, spaces inserted into the position are shown as cyan
squares. With the same blocks and letters, we see that a string starting with
for instance bbbe will represent an illegal position, as the right half of the
2 × 2 block would be inserted on top of the right wall. Conversely, a string
can be constructed from a position by doing the process in reverse.
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For instance, a puzzle with k distinct blocks and l spaces has an upper bound
of (k+l)!

l! distinct positions.

A tighter bound can be found by counting the number of ways to pack
the pieces into the board. We will call it the packing bound. Our basis
algorithm is backtracking where we try every remaining block at the next
unfilled cell in a partially filled-in grid. Our next step is to use memoization,
using a vector holding information about the number of blocks left of each
type, and a bitmask containing information about whether the next cells
are occupied. This allows us to efficiently calculate the number of possible
layouts for puzzles that have up to 1017 different layouts. For larger puzzles,
our method is still not sufficient, as the number of different states in our
algorithm becomes too large.

Table 2.2 shows the actual search space sizes, packing bounds, combinatorial
bounds and estimated average branching factor for the different puzzles. In
some cases they were not feasible to calculate, and will be shown by a dash
in that cell. Some remarks: Some additional constraints were enforced on
the bounds for The devil’s nightcap: The 3×1 block never leaves the bottom
row. We did not do any improved calculations for Hyperion, even though
the three topmost blocks never leave their respective corridors entirely.

The median search space upper bound (using the best bound we have for
each puzzle, which is the exact size for the smallest puzzles) is 1015.

2.6.2 Average branching factor

The average branching factor for a puzzle is defined as the average of the
number of neighbouring states for every unique position in the search space,
or the average degree of each node in the search space graph. In the cases
where we were able to do a full search in the puzzle, we have calculated the
exact average branching factor. This is the case for Easy, Forget-me-not,
Isolation, Hyperion, Climb game 15D and The Devil’s nightcap. For the
other puzzles, we have included the average over all positions we examined
in a breadth first search before we ran out of resources or time. For puzzles
with a very large search space we end up sampling only a very small part
of it in a very non-random way. However, this is of little consequence to us,
as we use these numbers for high-level reasoning and for comparing different
puzzles. We expect the relative order of the actual branching factors between
puzzles to be not too far off.

However, a high branching factor doesn’t necessarily imply difficulty of search-
ing. Triathlon has one of the smallest branching factors, but it’s not feasible
to solve with standard BFS. Also, San, which is solvable with BFS, has a
higher branching factor than many puzzles which are not feasible to solve
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with BFS. In this case, we are lucky that that solution occurs at a rela-
tively short distance from the starting position. The median of the average
branching factors of the puzzles we’ve considered is 5.43.

2.6.3 Reversible moves and parity

For any puzzle, the search space is an undirected graph, because a block can
always move back the way it came from; the move is reversible. The graph
can contain cycles.

The fact that the search space graph is undirected has a nice benefit when
doing a breadth-first search: we don’t need to keep track of the complete
history of previously visited nodes. Let search depth i be all the positions
that are first visited in iteration i of a breadth-first search. It suffices to
keep information about the two previous search depths from the current
depth the search is processing. Say we have already stored all positions
at depth n and want to generate depth n + 1. Let p1 be a position at
depth n and p2 be position reachable in one move from p1. Since moves are
reversible, position p2 couldn’t have occurred at depth n − 2 or earlier. If
it had occurred at depth m ≤ n − 2, p1 would have occurred no later than
depth m + 1 ≤ n − 1. Hence we need not store positions from depth n − 2
or less in order to check if a position is already visited. This argument holds
both when considering moves and steps. This result has previously been
proven by the Bricks community [24].

We get another benefit when using steps rather than moves in a breadth-first
search. Moving a block one step always changes the parity given by∑

i

(xi + yi) (mod 2)

where xi, yi is the position of block i. Any step changes one coordinate by±1.
Hence, every positions in the same search depth has the same parity. Hence,
when checking if a position has been visited before, we only need to check
against search depths having positions of the same parity. When combining
parity and reversibility, a breadth-first search at depth n generating the
queue for depth n+1 only needs to do duplicate checks against depths n−1
and n + 1. A breadth-first search using moves instead of steps has to check
for duplicates against depth n as well.

2.6.4 Solution length

Since the problem is PSPACE-complete, it follows that the solution length
is not bounded by any polynomial. Hence, it is expected that the solutions
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Table 2.2: Known search space sizes, bounds and estimated average branch-
ing factor for the different puzzles
Puzzle Actual search Packing Combinatorial Est.
name space size bound upper bound avg.bf
Easy 1.4 · 103 1.4 · 103 2.0 · 103 5.00
Forget-me-not 2.6 · 104 6.6 · 104 4.2 · 105 3.23
Ithaca - - 2.1 · 1030 18.22
American pie - 1.1 · 1017 3.8 · 1019 9.65
Still easy - 1.0 · 1011 4.2 · 1011 5.38
Rose - 7.0 · 1013 2.9 · 1015 4.14
Little sunshine - - 7.7 · 1054 23.80
Chair - - 1.9 · 1019 9.80
Isolation 5.1 · 106 1.5 · 107 1.0 · 109 5.40
Hyperion 1.9 · 108 1.0 · 1010 3.5 · 1014 3.56
San - 1.1 · 1012 6.2 · 1015 6.54
Corona - - 2.0 · 1032 10.18
Thunder - - 1.1 · 1027 11.37
Triathlon - 2.0 · 1013 6.9 · 1015 3.50
Magnolia - 1.6 · 1015 8.1 · 1018 4.96
Turtle - - 3.6 · 1030 6.16
Apple - - 7.8 · 1030 5.83
Schnappi - - 1.7 · 1039 6.88
Salambo - - 2.9 · 1047 20.56
Sunshine - - 6.6 · 1042 8.65
Paragon 1FG - 3.7 · 1012 2.7 · 1015 5.45
Warmup - 6.2 · 1011 7.3 · 1013 3.49
Get ready - 3.4 · 1017 2.1 · 1020 3.69
Climb game 15D 1.8 · 109 4.9 · 109 2.8 · 1012 3.90
Climb pro 24 - 1.9 · 1016 2.1 · 1021 3.99
The Devil’s nightcap 5.0 · 105 1.9 · 106 1.5 · 108 3.06
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lengths can be very long, even for relatively small puzzles. A good example
of this phenomenon is the puzzle The Devil’s nightcap (see figure 2.7). The
size is 5× 5 and the optimal solution needs 888 steps.

2.7 Play strategies

This section lists a few strategies used by humans when trying to solve
puzzles.

• Make an overall plan for how to solve the puzzle. Identify blocks which
are likely to be an obstacle. Find the most likely path that the master
block will take to the goal. This plan can include several stages, which
may involve repacking of several of the problematic blocks. On tight
puzzles with little space, there can be a lot of such stages.

• Keep the spaces close to each other, and keep them near the master
block.

• Keep blocks that are easy to move around near the master block. In
most cases this will be blocks of sizes 1x1, 1x2, 2x1 and 2x2.

• Pack large blocks or irregularly shaped blocks away in corners or other
places where they won’t interfere with the master block.

When attempting to solve a puzzle in the least number of moves (steps),
the above strategies are applied to a lesser degree. Instead, a number of
potentially short paths are considered, and then brute force is applied: the
user tries as many promising moves as possible.

2.8 Sliding-block puzzles in literature

There is little literature on the subject of solving sliding-block puzzles puz-
zles, except the special case of the 15-puzzle. To our knowledge, the only
source is Hordern [6]. They mention two problems within the domain:

A. Can you get from one configuration to another?

B. What is the least number of moves required to get there?

They say that the mathematics of sliding piece puzzles is either moderately
well known (in the case of the 15-puzzle) or is almost completely unknown. In
general, as far as they know, problem A is only solved by solving problem B,
and the only known method for solving problem B is systematic search. The
challenge of loops in the search graph is mentioned, with the conclusion that
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classic tree depth-first search techniques do not apply easily. Breadth-first
search is their recommended algorithm.

2.9 Previous solving attempts

To our knowledge, no report of any attempt at making programs to auto-
matically solve sliding-block puzzles exist in published literature.

Looking beyond published literature, hobbyist projects exist. The projects
we know about are based on breadth-first search. Some of them use ad-
ditional enhancements are very specific and are aimed at solving only one
specific puzzle. They have published their results on the internet, mostly via
discussion forums.

Rottler [24] mentions that it is possible to find the optimal solution to Mag-
nolia, using a modified exhaustive search algorithm. He doesn’t state the
nature of the modification. According to [24], it is also possible to solve Get
ready and Apple using a solver program.

Pflug [15] used another enhancement to be able to solve Paragon 1I (a slightly
more restricted version of Paragon 1FG). He attempted to solve it using
BFS, but ran out of memory after 111 moves. Whenever the search ran out
of memory, positions were removed based on very specific criteria (master
block has made little progress, and certain key blocks were in bad spots).
Also, his program searched for a key position 11 moves away from the goal,
rather than the goal position itself.

The next two paragraphs will describe two known implementations, our old
one, and JimSlide, a very efficient BFS solver published on the internet.
These two programs can be considered to represent the state of the art of
BFS-based solver programs for sliding-block puzzles.

We will compare the results of these programs with the results we get from
the new ideas we will be developing in this project. Different aspects, as
which puzzles are solved, and the amount of computational work needed to
solve the puzzles will be compared.

2.9.1 JimSlide

JimSlide [14] is a program that solves user-specified sliding block puzzles
using breadth-first search, and it is capable of utilizing the hard drive. In
addition to regular blocks, blocks moving only horizontally and vertically are
supported, as are disjoint blocks (a block with disjoint elements which move
together as a group).
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They use an efficient representation in memory of each position. Each po-
sition is encoded into a string where each symbol in the string represents a
block. The meaning of this string is explained in section 2.6.1. Let m be the
number of unique blocks in a given puzzle, including the empty cell and let
n be the number of blocks and empty cells in a puzzle. They use a constant
number of bits to represent each symbol and they use the lowest number
of bits such that each of the m symbols can be represented. Hence, each
element in the string takes dlog2 me bits and one position needs n · dlog2 me
bits.

The algorithm used is breadth-first search with one enhancement: When a
new search depth n + 1 is generated, only depths n − 1 and n are checked
for duplicates, in addition to checking for duplicates within the same search
depth. This enhancement is valid because the moves are reversible (see
section 2.6.3.

When expanding new nodes from depth n, the new nodes belonging to depth
n + 1 are put in a binary tree. When the tree has exhausted the designated
memory, the tree is converted to a sorted linked list (in-place by converting
pointers). Then a duplicate check is run against search depths n − 1, n
and what’s currently generated of depth n + 1, before storing this list to
disk. This duplicate check takes O(p2) time for one search depth where p is
the number of states in the search depth, because each partial list must be
checked against each previously generated list from the same search depth.

It is not mentioned which puzzles the program is able to solve. We have
tested the program, and it is able to solve puzzles like San and Isolation. We
believe that this program and the BFS portion of the resulting implementa-
tion in this project will solve the same puzzles.

2.9.2 Our old sliding-block puzzle solving program

During the period 1999-2009 (before the project), we worked on and off
(mostly off) on a sliding-block puzzle solver. This program uses BFS, and
it uses the same way of encoding a position to a string of block elements as
JimSlide. Memory usage optimisation is taken a step further though; given
the different blocks and how many of each are used in a puzzle, Huffman
coding is used to get the best possible encoding of elements. In addition, the
last element is dropped from the string, since it is implied, given the rest of
the string.

The program uses moves to detect child positions, but it can be changed
to use steps with one simple modification. The program supports blocks
that can move only horizontally and vertically (as in Rush Hour), as well as
disjoint blocks.



2.9. PREVIOUS SOLVING ATTEMPTS 29

As JimSlide, the program uses disk storage to store search depths and the
BFS queue. The BFS algorithm consists of two phases:

• Search: the current queue is processed and all child positions are
generated and stored.

• Delayed duplicate checking: After all the child positions are gen-
erated, they are checked for duplicates against the two previous search
depths, and against itself.

During the search phase, memory is divided in two: The queue in the first
half, and generated positions in the second half. New portions of the queue
are read from disk as needed, and generated positions are sorted and then
written to disk as the second half of the memory is filled up, creating a new
file. No duplicate checks at all are done at this stage. At the end of this
phase, we have generated all positions for the next search depth.

In duplicate check phase, the first step is to sort all the newly generated
positions, and to remove the duplicate positions within this search depth.
This is done via a disk mergesort. At first, the newly generated search depth
consists of m files. Each iteration merges files pairwise, removes duplicate
elements in the two files, and produces one new file of twice the size, or
slightly less if duplicates are found. After dlog me iterations, we are left
with one file containing distinct positions, where positions are sorted by the
binary value of their encoding.

Then, another pass is done in order to check for duplicates against the two
previous search depths. Memory is divided in four parts: Portion of search
depth n−2, portion of search depth n−1, portion of current search depth n
and the last area is written with the next search queue without duplicates.
For each position in search depth n, we check if it exists in depths n− 1 or
n−2. If it doesn’t, we keep it. Each portion in memory is read/written from
disk as needed.

The duplicate check takes O(kn log kn) time to perform (because of the
mergesort), using roughly 2kn = O(kn) space where n is the number of
positions in the search depth we wish to remove duplicates from. k here is
the branching factor of the puzzle.

With these improvements, this program is a very efficient BFS solver. We
have previously solved puzzles like Isolation, Hyperion, The Devil’s nightcap,
Climb game 15D, San and Turtle (where 8 blocks are locked into place) using
this program.
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2.9.3 Comparison between our old solver and JimSlide

JimSlide and our old program have much in common. In fact, our old solver
was heavily inspired by JimSlide. They are both based on breadth-first
search, and they use the same basis for the encoding of a position.

Our old program takes memory optimisation one step further, as Huffman
coding is used to shorten the memory representation of a position, as well
as not storing the last element. In addition, the asymptotic growth of the
run-time of the algorithm is improved. Performing duplicate check on n
position is done in O(n log n) with our old program, while JimSlide needs
O(n2) time to perform the same operation. The constant hidden behind the
big-O notation is extremely low, so n needs to be very large to experience
the quadratic growth of the JimSlide program.

JimSlide is slightly faster than our old program, it is faster by a factor of
around 1.4.



Chapter 3

Similar puzzles

3.1 Introduction

As we mentioned in the previous chapter, the literature pertaining to solv-
ing this kind of puzzle is very scarce. According to Demaine [4], "there is
little theory for analyzing combinatorial one-player puzzles." Nevertheless,
there exist cases in literature where one-player puzzles somewhat similar
to sliding-block puzzles have been attempted solved. In this section I will
present my results of studying this literature, and find out how successful
the attempts were. I will look into which algorithms which were chosen, and
what enhancements were used. Also, I will compare the properties of these
other problems to sliding-block puzzles. Some properties pertain to search
space, and include branching factor, length of solution, how many solutions
states there are in the search space (there can be as few as one solution),
type of graph (tree, undirected graph, directed graph). The discussion on
how difficult it is to find tight upper bound heuristics is contained in the
subsection "Status of solving" for each game, as this is not a static property
of the search space.

Enhancements to known algorithms will be studied in detail. According to
Junghanns [7, p.22], "the choice of the right algorithmic enhancement(s) is
more difficult and crucial to the performance of the program than choosing
the right algorithm." We will keep this advice in mind, and have a focus on
finding algorithmic enhancements.

Based on my findings, we will argue for an algorithm to use on sliding-block
puzzles.

31
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3.2 Sokoban

Sokoban is a one-player puzzle set in a maze, depicted by walls and open
squares in a rectangular grid. The object is to push all stones to designated
goal squares. The maze contains a man, whose possible actions are to move
to a neighbouring square, and to push a neighbouring stone. The man can
only push one stone at a time, and boxes cannot be pulled. Figure 3.1 shows
puzzle 1 from the original Sokoban puzzle set.

Figure 3.1: A sample puzzle from Sokoban.

3.2.1 Properties

The problem of finding any solution to a Sokoban puzzle is PSPACE-complete
[2]. A consequence of this is that solution lengths are unbounded by any
polynomial. Of the 90 puzzles in the test suite of Junghanns [7], puzzle 39
is the one that requires the most number of stone pushes to be solved. The
shortest known solution needs 674 pushes. The average solution length is
260.

Unlike Rubik’s Cube, the 15-puzzle and our sliding-block puzzles, moves in
Sokoban are not reversible in general. Hence, the search space is a directed
graph. In addition, it is possible to enter an unsolvable state by creating a
configuration of stones such that it is impossible to push the stones to the
goal. Such a state is called a deadlock. See figure 3.2 for several examples of
deadlocks.

The search space contains only one solution; the state where every goal
square contains a stone. However, a puzzle usually contains several stones,
but they are interchangeable. So it does not matter which stone is pushed
to a specific goal square.

The search space for a given puzzle can be huge. Before proceeding, one needs
to define the neighbours in the search space graph. Junghanns [7] defined
a move as a stone push. Two states are equal if the stone configuration is
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Figure 3.2: Some examples of deadlocks in Sokoban.

equal, and the man positions in the two states can reach each other. In their
test suite, the puzzle with the largest state space is puzzle 90, with a state
space in the order of 1029. The puzzle has 25 stones and the maze has 181
squares. The median search space size for the puzzles they considered is
1018.

The branching factor is also huge. Puzzle 48 has 34 stones, and each of these
can be pushed in at most 4 directions. So in this case, the branching factor
is up to 136. It’s slightly less in practice, as some stones can be next to walls
or other stones. The average branching factor is 12.

3.2.2 Status of solving

To our knowledge, Junghanns [7] is the most successful attempt at solving
Sokoban among the ones that are published. Their program Rolling stone
has solved 60 problems out of a test suite of 90 problems. Out of these 60,
12 were optimally solved. [7] also mentions other solving efforts. The best
program they know about can solve 62 problems, but the creators haven’t
published their results.

The Rolling stone program uses the IDA* algorithm, with several enhance-
ments:

• Transposition table: Used to avoid cycles and keep track of previ-
ously visited states.

• Move ordering: Try the most promising moves first. In their pro-
gram, pushing the same stone as the previous move is tried first. Then,
try all optimal moves (moves that decrease the lower bound to the
goal state), sorted by stone distance to goal. Then, try all non-optimal
moves.
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• Deadlock tables: Prune moves by checking if parts of a configuration
matches an entry in the deadlock table. The deadlock table is a set of
subboards containing a deadlock position.

• Tunnel macros: When a stone is pushed into a tunnel, push it all
the way through.

• Goal macros: When a stone is pushed to the goal area, push it all
the way to a goal square.

• Goal cuts: When it is possible to push a stone to the goal area, don’t
consider any other moves.

• Pattern search: Small searches in partial configurations done in at-
tempt to improve the lower bound heuristic.

• Relevance cuts: Restrict the search to not consider move sequences
containing unrelated moves.

The quality of the lower bound heuristic function for IDA* varies, but it is
close to the actual distance to the solution for a significant number of puzzles
in their test suite. However, calculating the lower bound is expensive, O(n3),
or an incremental cost of O(n2) (n is the number of stones), given that we
have already calculated the lower bound for the parent state.

3.3 15-puzzle, or n×m− 1-puzzle

We turn again to the 15-puzzle, a specialization of the sliding-block puzzle.
As we recall, the objective is to move the tiles until all tiles in the grid are
in order. The standard puzzle size is 4 × 4 with 15 numbered tiles and one
tile missing.

3.3.1 Properties

It is easy to determine whether a given puzzle instance is solvable. Consider
the sequence of numbers in the puzzle in the order they occur on the board.
Then, the puzzle is solvable if and only if there is an even number of inversions
(out-of-order pairs) in the sequence [4]. Likewise, a configuration can reach
another if the number of inversions for both configurations have the same
parity.

It has been proved via complete breadth-first search that no configuration
of the 15-puzzle require more than 80 moves [13].

The exact size of the search space is 16!
2 ' 1013, which consists of every

reachable state with the same parity. The state space contains only one
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solution, but there can be several optimal solution sequences. Different in-
stances (starting positions) belong to the same search space, unlike Sokoban
and sliding-block puzzles.

Given the natural generalisation of the puzzle to n2 − 1 (n × n sized grid
with n2 − 1 numbered tiles): It’s easy to find any solution, it can be done in
polynomial time. Finding the optimal solution (the lowest number of moves)
is NP-complete. The required number of moves is Θ(n3) in the worst case
[4]. The size of the search space is (n2)!

2 , where only reachable states are
included.

The branching factor varies between 2 and 4, depending on the position of
the blank square. The effective branching factor is therefore between 1-3,
since undoing the last move is never considered.

3.3.2 Status of solving

As mentioned in the previous section, the 15-puzzle has been solved using
breadth-first search, due to Korf [13]. They did a complete breadth-first
search of the search space, using parallel processing and storage of nodes to
disk. The average solution length across all states was 53 moves.

Culberson [1] uses IDA* with the following improvements:

• Pattern databases: This is a means of improving the lower bound
heuristic. It contains all solutions to the subproblem of correctly plac-
ing N tiles. They called this technique reduction databases in their
paper.

• Transposition tables: Keep track of previously visited states.

• Endgame databases: Store all states that are at most N moves away
from the goal state. When the search reaches a position in this set,
retrieve the distance and stop searching in this branch. They used
N = 25 in their approach.

Using reduction databases for 8 pieces, they managed to reduce the total
number of nodes searched by a factor of over 1700 on a standard test set
containing of 100 positions.

Korf [10] has found optimal solutions to ten random instances of the 24-
puzzle (5× 5). They used IDA* with the following improvements:

• Manhattan distance heuristic: Standard heuristic for the n2 − 1
puzzle, sum of the Manhattan distances from each tile to its goal.

• Linear conflict heuristic: This applies when two tiles are in their
goal row or column, but are reversed relative to their goal positions.
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• Last-two-moves heuristic: Based on the last moves of the solution,
where the blank is returned to its goal position.

• Corner-tile: This improvement applies for certain configurations in
the corners. These 4 heuristics are combined into an admissible heuris-
tic.

• Finite-state machine pruning: Encode the movement in the state
space as a finite-state machine such that duplicate nodes are avoided.

We refer to Korf [10] for further details regarding these improvements. Later,
they improved their result to solving 50 random instances of the 24-puzzle,
as well as improving the performance on the 15-puzzle by a factor of over
2000 [12]. They achieved this using disjoint pattern databases - multiple
subgoals whose heuristic values can be added together, while ensuring that
the sum is still an admissible heuristic function.

3.4 Rubik’s cube

The Rubik’s cube is a 3-dimensional mechanical puzzle invented in 1974 by
Ernõ Rubik. Each face of the cube contains 9 colour stickers, arranged in a
3× 3 grid. A face can be twisted around 90 or 180 degrees in any direction.
The puzzle is solved when each face shows only one colour.

Figure 3.3 shows the Rubik’s cube in a scrambled state.

Figure 3.3: Rubik’s cube.
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3.4.1 Properties

A move is usually defined in either one of two ways:

(i) A face turn of either 90 of 180 degrees.

(ii) A face turn of only 90 degrees.

All the references cited here use move alternative (i), unless noted otherwise.

No instance of the 3×3×3 cube require more than 22 moves [16] [17]. Also,
many positions requiring 20 moves are known, but no position is known yet
that requires 21 moves. The median optimal solution length appear to be
18 moves [11]. It is conjectured that no instance needs more than 20 moves.

Given the generalisation to k×k×k cubes, the problem of finding the optimal
solution is PSPACE-complete [4]. However, determining if a configuration
is solvable can be done in polynomial time. Also, a representation of a
non-optimal solution can be found in polynomial time.

The search space for the standard 3×3×3 cube is 8!·38 ·12!·212/12 ' 4.3·1019

[11]. The search space is an undirected graph since a move can always be
undone.

The maximal branching factor is 18, since there are 6 different faces with 3
different rotations each. However, it’s not interesting to rotate the same face
twice in a row, so the effective branching factor is at most 15.

3.4.2 Status of solving

Korf [11] describes a program that find optimal solutions to random instances
of Rubik’s Cube. They used IDA* with a lower-bound admissible heuristic
function based on pattern databases. The pattern databases contain the
exact number of moves required to solve various subgoals. In this case,
the database contains the number of moves required to bring subsets of
cubies to their correct position. Ten random instances were solved in 16-18
moves. They argue that A* is impractical on this problem, because of the
exponential space requirement.

3.5 Summary and comparison of the problem do-
mains

We notice that most solving efforts mentioned used IDA* as the preferred al-
gorithm, in combination with a good admissible lower-bound heuristic func-
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tion. The heuristics made use of pattern databases, which held information
about the number of moves needed to solve subsets of the original problem.

This was sufficient for solving random instances of the Rubik’s cube, the
15-puzzle and the 24-puzzle.

Sokoban seems like a harder domain to tackle than the 15-puzzle and the
Rubik’s cube. Domain-specific enhancements were needed in order to solve
many puzzles. IDA* with transposition tables wasn’t enough to solve more
than a few puzzles. Adding tunnel macros, goal macros, goal cuts and rele-
vance cuts helped cut down the search space, but this resulted in no guar-
antee of optimal solutions.

Sliding-block puzzles and Sokoban share several properties:

• The problem of finding any solution is PSPACE-complete.

• Different search space for each puzzle (unlike the Rubik’s cube and the
n2 − 1-puzzle).

• On average, the solution sequences are longer than for the other do-
mains.

In Sokoban, the deadlock tables were common for all puzzles. The pattern
search in partial configurations used for improving the lower-bound heuristic,
however, had to be done for each puzzle as different puzzles in general have
different maze layouts.

These results from Sokoban suggest that we need to look into domain-specific
enhancements in order to have any hope of solving difficult sliding-block
puzzles.

The solving efforts for these problems also suggest that IDA* is the ideal
choice. For difficult puzzles, algorithms like BFS and A* have huge memory
requirements. Although in one instance, BFS was used to do a complete
search of the 15-puzzle.

We are not aware of any attempt at making lower-bound heuristics for
sliding-block puzzles. We must be prepared to have difficulties in attempting
to construct a good lower-bound heuristic.

Table 3.1 summarizes some of the search space properties for these four
problems.
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Table 3.1: Average (mean) branching factor, search space size and solution
lengths for the various domains.

Sliding-block Sokoban 15-puzzle 24-puzzle Rubik’s
puzzles cube

Branching factor 5.43 12 3 3.2 18
Search space size 1015 1018 1013 1025 1019

Solution length 246 260 53 100 18
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Chapter 4

Solving sliding-block puzzles

For convenience, we repeat some of the significant search space properties
for sliding-block puzzles.

• There are numerous goal nodes, but they can be located deeply in the
tree.

• The search space is different for each puzzle, it can be huge, and the
underlying graph is undirected.

• The branching factor varies, but it can be large.

• Small puzzle layouts can have long solution lengths.

In this chapter we will discuss several algorithms and enhancements and how
well they could perform on solving sliding-block puzzles, given the properties
we know about the search space, and the previous solving efforts of both
sliding-block puzzles and the other kinds of puzzles mentioned. We will then
recommend one or more algorithms to implement.

About the importance of algorithmic enhancements and the difficulty of
making use of them, Culberson [3] says "When presented in the literature,
single-agent search (usually IDA*) consists of a few lines of code. Most text-
books do not discuss search enhancements, other than cycle detection. In
reality, non-trivial single-agent search problems require much more exten-
sive programming (and often research) effort. For example, achieving high
performance for solving [the 15-puzzle] requires enhancements such as cy-
cle detection, pattern databases, move ordering and enhanced lower- bound
calculations"

We have the choice between informed and uninformed algorithms. What we
should choose, depends on the availability of domain knowledge. If domain
knowledge is available, an informed algorithm is preferred.

41
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4.1 Uninformed algorithms

4.1.1 Random walk

Walk to a random neighbour in the search space graph randomly until we
reach a solution node. This might look like a silly algorithm, but it could
actually be useful if we don’t care about the quality of the solution, the goal
density is high (the number of goal nodes compared to the total number of
nodes in the search space graph), and we have little to no domain knowledge.
Junghanns [7] suggests that in each step, we select a random open node
instead of selecting a neighbour of the current node.

4.1.2 Breadth-first search

Examine all nodes in the search space. All nodes in search depth n are
examined before any node in search depth n + 1. We are guaranteed to
find the optimal solution if there is one. The disadvantage is the memory
requirement, we need to be able to hold at least two complete search depths
in memory at any one time, and having a way to detect duplicate positions
will require even more memory.

4.1.3 Depth-first search

Examine the entire subtree before examining sibling nodes. The basic al-
gorithm won’t work well on our problem, since the search space graph has
cycles. At the very least we need to avoid visiting nodes we visited in order
to reach the current node.

4.1.4 Depth-first iterative-deepening (DFID)

Iterative-deepening is a technique that can be applied to depth-first search.
The depth-first search is run multiple times, starting with a maximum depth
of 1 which is increased by one for each run. When the algorithm terminates,
we have found the optimal solution. In the case where DFS and iterative
deepening DFS are run on trees, iterative deepening DFS is asymptotically
optimal with regard to space, runtime (nodes examined) and solution length
compared to BFS and DFS [9]. One could think that it’s a waste of resources
to run repeated DFS’s for nodes of early depth, but the last iteration’s
runtime will dominate the cost.
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However, this nice property no longer holds when searching on a graph that
is not a tree. DFS in its purest form doesn’t keep track of visited states, so
we need to take care of that.

Even when we do keep track of visited states within each iteration, iterative
deepening can be a worse choice than DFS for certain search spaces with
a low branching factor, or where the effective branching factor decreases as
a function of the search depth. In such cases, the last iteration will not
dominate the cost of all the previous iterations and the total execution time
for iterative deepening can be much higher than for a regular DFS.

The technique of iterative deepening can also be applied to other search
algorithms such as bidirectional search and A*.

4.1.5 Bidirectional search

Bidirectional search is a technique using two searches - one from the starting
position, and one from the goal position(s). The search terminates when the
two search trees intersect.

Assume a constant branching factor b and a distance to goal d. Then, the
two searches each have complexity O(bd/2). The sum of these two search
times are much lower than the time complexity O(bd) that would result from
a standard search.

The disadvantage is that we need a way to determine when the search trees
meet each other. Usually this means keeping one of the search frontiers in
memory, and checking every newly generated node in the other tree if it is
contained in the search frontier.

Other potential problems include goal nodes that are implicitly stated, or if
there are multiple goal modes. Sliding-block puzzles can contain an exponen-
tial number of goal nodes, which clearly poses a problem for this algorithm.

Also, the effective branching factor for a problem could be higher when going
backwards.

4.2 Informed algorithms

4.2.1 A*

A* is a best-first search algorithm. At any time, the node with the lowest
f(x) = g(x) + h(x) among the unexplored nodes is expanded. Here, g(x) is
the actual cost of moving from the start position to node x, and h(x) is the



44 CHAPTER 4. SOLVING SLIDING-BLOCK PUZZLES

estimated distance from x to goal. In order for A* to find optimal solutions,
h(x) needs to be admissible, that is, it must never overestimate the cost from
x to a goal.

The efficiency of A* depends on the heuristic function h(x). Exponential
growth will occur, unless

h(x)− h∗(x) ≤ O(log h∗(x)),

where h∗(x) is the true cost of getting from x to the goal [20]. We don’t
expect to find a heuristic function satisfying this condition, and none of the
previous efforts managed to satisfy this condition for any of the problems
we’ve looked at.

In practice, the main drawback of A* is its memory usage, rather than
computation time. This makes A* unpractical for problems with huge search
spaces.

4.2.2 IDA* (Iterative-deepening A*)

IDA* is the combination of depth-first iterative-deepening with A*. IDA*
was first described by Korf [9].

IDA* works as follows. The search is done over several iterations. During
one iteration, a depth-first search is performed. IDA* does not expand nodes
having a total heuristic cost f = g +h higher than some cutoff p (also called
the pathlimit. If no solution was found during the iteration, the cutoff p is
increased and another iteration is run.

Given an admissible heuristic h, IDA* will find the optimal solution, if one
exists. If the search space graph is a tree, IDA* will expand approximately
the same number of nodes as A*. The search spaces we are looking at are
not that nice, however. In order for IDA* to avoid expanding the same
node twice, we need to keep track of previously visited nodes. In this case a
transposition table is often used.

According to Junghanns[7, p.34], if the ratio between the correct distance
h∗ and the estimated distance h is large, IDA* will perform rather poorly,
since many iterations will be run without finding a solution. In this case, A*
will be a better choice.

4.2.3 SMA* (simplified memory-bounded A*)

Russell and Norvig [20] describes a memory-bounded alternative to A*, called
SMA*.
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Before running out of memory, SMA* works just like A* - expanding the
best open node according to f(x) = g(x) + h(x). When memory is full,
some nodes need to be dropped in order to add new ones. Whenever we
need memory, the stored node with the highest f -value is dropped. Then,
the algorithm backs up to the node with the lowest f -value and expands it.
SMA* will regenerate a forgotten subtree only when all other paths have
been shown to look worse than the path which was forgotten. However,
Russell and Norvig [20] says this is the most complicated search algorithm
they have seen so far.

The advantage of SMA* is that it’s possible to solve more difficult problems
than A*, given enough memory, without significant overhead in terms of
extra nodes generated. It performs well on problems with highly connected
state spaces and real-valued heuristics, on which IDA* has difficulties.

On very hard problems, SMA* can perform badly. It can be the case that
SMA* will switch back and forth between a set of candidate solution paths.
In sliding-block puzzles, there is an exponential number of goal states, and
hence it is likely that the number of solution paths is huge. Hence, SMA*
could potentially jump back and forth between two or more non-overlapping
solution sequences of near-equal length, forgetting and regenerating subtrees
several times. Repeated expanding of the same node can make some prob-
lems intractable for SMA* even though A* could solve them given enough
memory.

4.3 Algorithmic enhancements

In this section, we will discuss the different enhancements used for solving
the 15-puzzle, Rubik’s cube and Sokoban.

4.3.1 Transposition table

A transposition table fulfills two purposes: To avoid cycles in the search
graph when using IDA*, and avoid expanding previously visited (and ex-
panded) nodes. Additional information can be attached to a node, like the
best lower-bound found so far.

If we continue to insert into the table, we will eventually run out of memory.
We have a few alternatives:

• Give up, and output that we didn’t find a solution because we ran out
of resources.
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• Drop entries from the table. It could be the oldest one, the one farthest
from a goal state (according to the heuristic evaluation) or some other
criteria.

• Utilize second-level storage.

A way to implement transposition tables is to use a hash table, using the
current position as the key.

4.3.2 Move ordering

When there are several equal candidates for the next move, choose the most
promising move among these.

Junghanns [7] used move ordering for Sokoban. They defined the concept
of inertia - if a particular stone was pushed in the previous move, moves
pushing the same stone again will be given priority among the moves with
equal cost.

For sliding-block puzzles, one possible use of move ordering is to always
consider master block moves before other moves.

4.3.3 Weighted heuristics

This is a tweak that can be applied to A* and IDA*. Given a non-tight
heuristic function, the idea is to scale it so it better approximates the actual
cost. The cost function becomes f(x) = g(x) + w · h(x). We will lose
admissibility, but it can work well in some cases. Junghanns [7] reported
mixed success when applying WIDA* (weighted IDA*) on Sokoban puzzles.
They tried different values of w between 1.025 and 1.25. With w = 1.15 they
managed to solve one more puzzle, but the erratic behaviour of the search
made it difficult for them to justify the use of WIDA*.

4.3.4 Pattern databases

The idea of pattern databases is to store the exact distance to the goal for
a subproblem, namely a relaxed version of the problem we are trying to
solve. A pattern database stores the exact solution costs for every instance
of the subproblem. This will be used as a lower-bound heuristic in a search
algorithm like A* and IDA*.

Pattern databases were used by Culberson [1] and Korf [11] [12]. Culberson
[1] used pattern databases to solve the 15-puzzle efficiently. They used a
database containing exact solution costs of all positions containing 7 specific
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numbered tiles and the empty cell. This lead to a better lower-bound heuris-
tic than the sum of Manhattan distances to the goal for each tile. Korf [12]
used disjoint pattern databases to solve the 24-puzzle. The main idea here is
that the sum of lower-bounds from disjoint goals will be an admissible lower-
bound for the full problem. They used four disjoint databases containing 6
tiles each, and each group was chosen so that the tiles within each group
were close to each other in the goal state. The reason was that these tiles
were more likely to interact with each other, creating a better lower-bound
heuristic. For each group, all possible positions with the 6 tiles were stored
along with the exact solution cost.

Korf [11] used pattern databases for Rubik’s cube. Three databases were
made: one considering only corner cubies, and two for the two groups of
6 edge cubies. In each case, the distance to goal were computed for every
possible state. The lower-bound heuristic used was the maximum of cost
found from the corner cubie database and the two edge cubie databases.
The expected value for the maximum of these three heuristics were 8.878
moves. Given that the median solution length is believed to be 18, this
resulted in an efficient search.

The deadlock tables in Sokoban is a special variant of a pattern database.
Instead of improving the lower-bound heuristic, the deadlock tables are used
to identify deadlocks in a position. Junghanns [7] generated all possible
deadlocked positions for a 5× 4 grid. If a move leads to a position contains
a pattern that is contained in the deadlock tables, this move is not inserted
into the move list.

If we were to use pattern databases on sliding-block puzzles, we would need
to construct separate databases for each puzzle, since each puzzle contains
differently shaped blocks. Hence, the cost of constructing the databases can-
not be amortized over different problem instances and should count towards
the effort going into solving the puzzle.

Performance test of pattern databases on sliding-block puzzles

We did a small test to check the performance of pattern databases on the
puzzle The Devil’s nightcap.

We removed one non-master block at a time, and searched from the new
starting position to find the number of steps to a solved position. With this,
we achieve the same effect as looking up the starting position in a pattern
database in order to find a lower bound for the number of steps needed to
solve the puzzle.

The results can be seen in table 4.3.4. For each block size removed, the
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Table 4.1: Using pattern databases on The Devil’s nightcap
Block Solution Search space

removed length size
None 888 497,872
1× 2 47 23,937,410
1× 1 70 3,746,424
2× 1 43 15,463,188
3× 1 29 43,431,574

solution length is the maximum taken over each copy of the block removed.

The best pattern (removing one 1×1 block) is still only 0.079 times the real
cost, which makes it a bad fit, and is likely to not be very helpful in directing
a search using A* and IDA*.

From this test, it appears that pattern databases for sliding-block puzzles
are of limited use for puzzles with little space and long solution sequences.
Another disadvantage is the size of the pattern database, it can be larger
than the search space of the puzzle itself. In such a case, it is more sensible
to do a full search in the actual puzzle. (Though, in this case we can reduce
the size of the pattern database by 1

5 by locking the 3×1 block to the lowest
row.)

However, we cannot conclude anything about the usefulness of pattern databases
on other kinds of puzzles. It might happen that the lower bound will be a
better fit in these cases, though it is likely that the work needed to construct
a pattern database will be significant.

4.3.5 Macro moves

The idea of macro moves is to reduce the search space by combining several
moves into one super-move - a macro.

This concept is useful when it doesn’t make much sense to break up a se-
quence of moves. Two examples come from Sokoban:

• Tunnel macro: Whenever a stone is pushed into a tunnel, push it all
the way through.

• Goal macro: Whenever a stone has a clear path to a goal square,
push it all the way to the goal.

A disadvantage is that macros may not always preserve optimality of the
search algorithm used. Junghanns [7] reports that the use of goal macros
may result in non-optimal solutions for Sokoban.
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4.3.6 Endgame databases

For problems where instances share the same search space (like the 15-puzzle
and the Rubik’s cube), it can be beneficial to construct an endgame database.

An endgame database contains all positions up to a distance d from the goal
state, along with the exact distance to the goal. d is usually the largest
possible value such that the endgame database fits on some storage device
(either memory or disk).

Culberson [1] used endgame databases as one of several improvements for
solving the 15-puzzle. Their endgame database contained all positions up to
25 moves away from the goal position.

Endgame databases have been commonly used in game-playing programs for
two-player games such as Chess and Checkers.

However, since each sliding-block puzzle has separate search spaces and the
goal positions are rarely fully specified, endgame databases appear to be less
useful for this domain.

4.3.7 Relevance cuts

Relevance cuts are a way to emulate humans and the way they successfully
manage to navigate through large search spaces. For huge problems, humans
can make a plan on how to reach the goal, and this plan involves a series of
steps. For a given position in a problem, not any move is relevant in order to
achieve the goal. The search is restricting the next possible moves to moves
that are related to the previous moves (with some exceptions).

Junghanns [7] used relevance cuts as an enhancement in Sokoban. They
constructed a table influencetable[a,b] which returns the influence a move
from position a has on a move from position b. Two moves influence each
other if the entry in the table for a, b contains a value not above a user-tunable
threshold. Two moves that aren’t influencing each other, are distant.

A move was cut off if more than k distant moves were made within the last
m moves. k was always set to 1 in their experiments.

With this technique they managed to solve two more puzzles. It also resulted
in large reductions in the effort required to solve other puzzles.

4.3.8 Pattern search

Pattern search is a technique used only in Sokoban, as far as we know. For
each position, a small search is done with some stones removed. The result
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of this search is used to improve the lower-bound heuristic for the position.
It can be considered a dynamic variant of the pattern database.

4.4 Domain-specific enhancements

In section 3.5, we concluded that we needed domain-specific enhancements
in order to solve more difficult sliding-block puzzles. The domains of sliding-
block puzzles and Sokoban share some of the properties that make these
kinds of puzzles harder to solve than instances of the 15-puzzle and Rubik’s
cube.

In this subsection we are looking into suggestions for enhancements specific
for sliding-block puzzles.

Some of these ideas have previously been mentioned on the public forum on
the Bricks website [24]. More precisely, this source mentions enhancements
as directed search, distributed computing, dropping of scattered space boards
and subboard optimisation.

We refer to section 2.7 for a list of human strategies that we may want to
emulate.

4.4.1 Pruning based on properties of positions

One possibility is to prune search trees based on static analysis of a position.
If a position is considered unpromising, we don’t add the position to the
move list.

In order to move a block around, there needs to be open spaces in front if it
in the direction of movement. Hence, it’s hard to move blocks around if the
open spaces are scattered across the board.

We can design an evaluation function that returns a value such that a lower
value means that the open spaces in the position are grouped closer together.
We can then prune the search tree for positions where this number is larger
than a threshold value. One possible function q is given in equation 4.1,
where the position contains n spaces with coordinates (x1, y1), (x2, y2), . . . , (xn, yn).
This function returns the sum of Manhattan distances of all pairs of spaces.

q(position) =
n∑

i=2

i−1∑
j=1

(|xi − xj |+ |yi − yj |) . (4.1)
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Another suggestion for such a function is the minimum number of squares
needed in order to connect all spaces in a position.

Care must be taken so that a too low threshold isn’t selected. A too low
threshold can have two consequences: Either one loses the optimal solution,
or one loses the ability to find any solution at all. We are more concerned
with the last issue in this project.

One possible algorithm is to begin with a low threshold (for instance, the
value returned from the starting position), and if no solution is found, in-
crease the threshold and repeat the search.

Some other metrics could also be considered when determining the goodness
of a position:

• General mobility: The number of possible moves in a position.

• Master block mobility: The shapes and sizes of the blocks near the
master block.

• The number of fault lines in a position. A fault line is a vertical or
horizontal line which doesn’t intersect any blocks.

• In addition to measuring how far away the spaces are from each other,
the positions of the spaces relative to the master block are interesting
as well. It’s desirable to have them close to the master block.

Instead of cutting these positions off the search tree completely, the features
described above can instead be incorporated into the heuristic evaluation
function for A*/IDA* in order to penalize such positions. It would be very
hard to make sure such a function is admissible, though.

4.4.2 Don’t allow certain moves

One feature that can characterize moves done by a human player in such a
puzzle, is that blocks are moved according to a plan. Each block moved will
have a designated destination.

Often, in the initial position of a puzzle, the master block is at the opposite
side of the grid from the destination square. In addition, the blocks in middle
are shuffled in an unfavourable way. The solution often involves repacking of
the pieces so that they are easier to move around. When a block is parked,
it will rest against other blocks on at least two sides.

One heuristic attempting to capture this way of parking blocks, is to disallow
moves that don’t leave blocks in a position good for packing.
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A block is said to be resting if at least two of its non-opposite sides are resting
against other blocks, or the frame. A block is hanging if it isn’t resting.

When a block is in transit from its previous position to its new position, it
will sometimes necessarily enter the hanging state. What we wish is to avoid
having several blocks at this state. If at least one hanging block exists in
a position, we don’t want to move other blocks (except possibly the master
block).

4.4.3 Don’t allow the master block to move away from the
goal

This is an idea that might not work in many cases, but can lead to huge
reductions in the search space when it does work.

The idea is simple enough: Don’t consider moves that increases the distance
of the master block to the goal.

Other variants are possible, for instance only allowing up to a certain number
of such moves.

4.4.4 Assume that some blocks are never used

This is an idea that is likely to work on some larger puzzles and/or puzzles
with multiple solution paths. It is already known to work on the puzzle
Turtle. One can conjecture that some of the blocks need not be moved in
order to solve the puzzle. For instance, it is trivial to see that one column
of blocks need not be moved on the puzzle Easy.

However, the difficulty of automatically finding blocks that never need to be
moved is unknown and remains to be investigated. The simplest solution
would be for a human to select the blocks. One could also imagine an algo-
rithm that starts with the entire board locked, and then iteratively unlocks
blocks for movement. Finding the next block to unlock is a potentially dif-
ficult problem. Another way of unlocking pieces is to make a graph of the
blocks, where there is an edge from block a to block b if b must be moved in
order for a to move. Then, do a topological sort on the graph. If we wish to
unlock a block c, we also unlock every block corresponding to a node that
can be reached from c.

4.4.5 Cleanup after running out of memory

When doing a full search in a huge search space, we are expected to run out
of memory at some point.
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When this happens, we can throw something out of memory and continue
the search. For instance, when the search queue exceeds p elements, we
can go through the queue and drop every element except the q best ones,
according to an evaluation function.

To keep the search going even longer, we also need to throw out elements
from the set containing all positions we have seen so far. When the set is full
(according to some limit we have set) and we need to insert a new element,
there are two main ways to drop an element: Either drop the least frequently
used one, or the least recently used one. Either way, the set structure would
need to be augmented to keep track of this information. One could also
analyse the usage pattern of this set, and come up with hybrid strategies
that work better for this domain.

4.4.6 Subboard (local) solving

Consider to only move blocks inside a subboard surrounding the master
block. For instance, don’t allow moves where the block to be moved is
farther away from the master block than d unit squares. The distance d
could for instance be the smallest Manhattan distance from a subsquare of
the master block to a subsquare of the block to be moved.

Finding a good value parameter d is hard. If it is too small, the puzzle would
be unsolvable. An iterative algorithm could be run, such that d is increased
and the search is restarted if no solution was found.

Also, in some puzzles the spaces are far away from the master block, making
it harder to restrict the d value. Though that could be decreased as the
spaces are moved closer to the master block.

4.4.7 Plan with subgoals

Support intermediate goals. When an intermediate goal is reached, clear the
search queue, and start a new search where the new start node is the node
that reached the intermediate goal. In addition, not clearing the history of
previously visited positions will prevent the search from going backwards.

Typical intermediate goals are moving the master block to certain positions
(along the path from the start position to the final goal), move a key block
out of the way, or move the spaces to a beneficial position, like in front of
the master block or a key block.

Another improvement would be to automatically find such subgoals. This is
expected to be a very hard task.
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4.4.8 Post-processing non-optimal solutions

Many of the techniques we have mentioned will lead to non-optimal solutions.
If we want to shorten the solution sequence, post-processing can be applied.
For instance, take a short segment of the solution found, and use a small
search to find the shortest path between the start and the end of the segment.

Another alternative is to improve a non-optimal solution by human inspec-
tion.

4.5 Parallelism

Modern CPUs typically come with several processing cores on the same
chip. This is another capability that can be exploited, and can result in vast
speedups. The speedup will enable us to search a bit farther into a search
space, given a constant amount of time.

However, there are some disadvantages. Designing parallel algorithms is
more difficult than designing serial algorithms. The resulting implementation
is likely to be more complex than the corresponding sequential algorithm.

Due to the limited time at disposal in this project, we will not pursue this
idea further.

Korf [12] used parallel breadth-first search in order to do a complete search
for the 15-puzzle. They used POSIX threads to parallelize the search. All
threads shared the same data space, and mutual exclusion was used to tem-
porarily lock data structures.

4.6 Memory hierarchy

Some algorithms like BFS and A*, the memory limit is often reached before
we run out of time or patience. Hence, using disk drives to enable us to
search much farther is an interesting possibility.

The algorithms need to be designed carefully, however, so that the disk access
is sequential whenever possible, as random disk access is several orders of
magnitude slower than memory access.

Our previous sliding-block puzzle solving program used disk storage with
sequential disk access to allow us to search farther where we normally would
run out of memory.
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We will not pursue this idea further in this project, apart from using our old
sliding-block solver when we find it useful.

When using disk storage, care must be taken to avoid corrupt data. Korf
[12] used disk storage in their complete breadth-first search of the 15-puzzle,
in addition to using a parallel algorithm. They had to use several disks in
RAID in order to guarantee correctness of the data that was written to disk,
as the large amounts of data written (1015 bits) resulted in frequent disk
errors when run on a disk system without redundancy mechanisms.

4.7 What we will implement

We have decided to implement BFS, A* and IDA*.

BFS was chosen because it is easy to implement, and it is expected that we
can examine more positions in a given time frame than the other algorithms.
Also, we have some puzzles in our test suite where we expect A* and IDA*
to perform badly.

IDA* was chosen because it has performed well on all the similar domains
mentioned in section 3. However, the performance of IDA* is highly depen-
dent on the quality of the heuristic function. If the h(x) estimate is too low,
it can lead to an excessive number of iterations being performed. We will
implement a simple transposition table with no other purpose than marking
previously visited positions in an iteration.

A* was chosen as an alternative to IDA*, since it is very easy to implement
both IDA* and A* once we have written the necessary subroutines. Also,
A* is a nice reserve in case IDA* performs poorly. Another reason is that
we wish to test non-admissible heuristics.

We have decided to include the following enhancements and ideas:

• Transposition table: Added for IDA*, because IDA* does not per-
form well on graphs with cycles unless we mark visited positions.

• Weighted heuristics: This is easy to implement, and we believe it
will result in an increased performance for the A* algorithm, since we
can achieve a better fit to the actual cost function.

• Pruning based on the closeness of spaces: We believe this is a
key property for describing a good position in our domain, and this
can lead to large reductions in the search space size. We will also use a
space closeness function as a penalty add-on to the heuristic function.

• Position of spaces relative to the master block: This can be use-
ful for giving the heuristic function increased granularity in measuring
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the distance to a goal position.

• Pruning: Don’t allow to move other blocks in the presence
of hanging blocks: We think this is an important concept which
emulates they way humans play.

• Pruning: Don’t allow to move the master block away from
the goal: This enhancement will probably only work on the easier
levels, but we include it since it is easy to implement.

• Assume that some blocks are never used: It is known that this
idea will result in enabling Turtle to be solvable. In addition, it is easy
to implement.

• Cleanup after running out of memory: This idea has been used
with success by Pflug [15], so we include it as well.

• Subgoals: This will break up a puzzle into smaller parts, and we
believe this enhancement can reduce the complexity of a puzzle.

The following enhancements and ideas will not be included:

• Move ordering: We cannot see how this can be beneficial for our
domain.

• Pattern databases: Preliminary tests shows that constructing pat-
tern databases will use more resources than solving the puzzle itself.

• Macro moves: We cannot find a way to make use of this idea in our
domain.

• Endgame databases: These cannot be used in our domain, because
the goal positions are rarely fully specified, resulting in an exponential
number of goal positions in the search space.

• Relevance cuts: This enhancement assumes that there exist moves
in a position that don’t influence each other. This does not hold for
our domain.

• Pattern search: This is an enhancement similar to pattern databases,
and will not be included for the same reason as for pattern databases.

• General mobility: We think this enhancement will be made re-
dundant by other enhancements that we are including (pruning and
penalty based on the closeness of spaces).

• Master block mobility: This could have been a good enhancement,
but we have no clear idea of how to implement this idea.

• Number of fault lines: We believe this concept is captured by an-
other concept (general mobility), which we also chose to not include.
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• Sub-board (local) solving: The idea is interesting, but we cannot
find a good way to implement it.

• Post-processing non-optimal solutions: In this project, we focus
on finding any solution to a puzzle rather than finding the optimal
solution.
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Chapter 5

The implementation

This chapter will describe the implementation that was created during this
project. Our previous effort, an efficient BFS solver using disk swapping, is
described in section 2.9.2.

Its code base is rather messy, making it hard to expand the program with
new features. Therefore, a new program was made from scratch, attempting
to make it easier to expand with new algorithms and improvements than
the previous version. Some ideas were reused, like the way a position is
represented in memory using Huffman coding.

5.1 Description of the program

The program is operated from the command line prompt. The program
accepts several parameters. The only mandatory parameter is a file name
containing the puzzle to be solved. This file can contain intermediate goal
positions (partial goals). The following list contains the optional parameters.

• Choice of algorithm (BFS, A* or IDA*).

• Set initial pathlimit value for IDA*.

• When reaching a subgoal, clear the history of previously visited posi-
tions.

• Force efficient duplicate check for BFS (correct when moves are re-
versible), even when it is wrong to use it.

• Turn on or off all the different prunings, as well as adjusting their
parameters.
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• Select which heuristic function to use, as well as adjusting their pa-
rameters.

• Don’t terminate when solution is found.

Figure 5.1 shows a screenshot of our program, showing the usage screen
with the available parameters. Figure 5.2 shows the output after solving the
Triathlon puzzle with out best settings.

Figure 5.1: Screenshot of our solver, options screen

The same program is used to find the packing bound, and hence it contains
a parameter for invoking the bound calculation, and some additional param-
eters for transposing and flipping the board in order to help speed up the
bound calculation.

Implementation was done with the purpose of being easy to maintain and
expand rather than being fast. In fact, the new program ended up being
a factor of 6 slower than our old program. Subroutines was made to be
used for all the implemented algorithms, and some do slightly more work
since they are general for all algorithms. Also, structures are passed via
parameters, instead of storing them globally as in the old program. In some
cases, structures are copied instead of passing a reference. The latter is
probably what accounts for most of the difference in execution time compared
to the old version.



5.1. DESCRIPTION OF THE PROGRAM 61

Figure 5.2: Screenshot of our solver, solving the Triathlon puzzle
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The program does not support swapping to disk when the memory is used
up. For excessively large BFS runs we still have the option of using the old
program.

5.2 Implementation of heuristics and improvements

This section describes how the heuristics are implemented. Each heuristic
can be activated manually by the user.

5.2.1 The A*/IDA* heuristic function

The program includes three slightly different heuristic functions. These are
explained in the following subsections.

The Manhattan distance heuristic, h0(x)

The first heuristic function is rather trivial: The Manhattan distance from
the position of the master block to its goal position. This heuristic is clearly
admissible, because it’s not possible to move a block a distance of d in less
than d steps.

Slightly improved heuristic, h1(x)

This heuristic attempts to capture the fact that there is a limited amount of
free space in a puzzle, and extra steps are needed in order to bring the free
space in front of the master block each time it advances.

The following formula was implemented:

h(x) = xm + ym + 2
xmxr

s
+ 2

ymyr

s
,

where xm, ym is the distance of the master block to goal in the x-axis and y-
axis, respectively, xr, yr is the number of free spaces required for the master
to move horizontally and vertically, respectively, and s is the number of free
cells in the puzzle.

The intention was to design this to be an admissible heuristic. However, we
didn’t attempt to prove it and it turns out the heuristic is not admissible after
all. There exist positions in the puzzle Isolation where the heuristic function
overestimates the distance to the goal. We decided not to change it, since it
was discovered after the majority of the tests were done. In addition, almost



5.2. IMPLEMENTATION OF HEURISTICS AND IMPROVEMENTS 63

all the runs that used this heuristic also used added penalties which clearly
make the resulting heuristic function non-admissible.

Non-admissible heuristic, h2(x)

With basis in the above heuristic, two penalties can be added.

• A penalty based on the average position of the spaces, and its distance
from the master block.

• A penalty based on how scattered the spaces are.

The formula for the first penalty p1 is:

vx = max(0, |xw − (xp + xr)| − xr)
vy = max(0, |yw − (yp + yr)| − yr)

p1(x) = α1(vx + vy)

where xw, yw is the average position of the spaces, xp, yp is the position of
the upper left portion of the master block, xr, yr is the centroid of the master
block, α1 is a scalar giving the weight of this penalty and x is the position
we want to evaluate. vx and vy represent the distance of the centroid of the
spaces to the centroid of the master block, after subtracting the "radius" of
the master block. We use the difference between the upper left corner of the
master block and the centroid of the master block as the radius.

The formula for the second penalty p2 is:

p2(x) = α2 max(0, s− t)

where s is the position’s space value (equation 5.1, t is a lower threshold for
what space values we want to give a penalty, α2 is a scalar giving the weight
of this penalty and x is the position we want to evaluate.

Weighted heuristic

This modification was originally explained in section 4.3.3. To repeat, the
solution cost used in A* and IDA* when using a weighted heuristic function
is f(x) = g(x) + wh(x) for some constant w > 1, where g(x) is the actual
cost from the start to the current position, and h(x) is the estimated cost to
goal. w can be set by the user.

5.2.2 Pruning the search space

Several enhancements are made in an attempt to reduce the search space,
while hopefully not cutting off positions vital for finding a solution.
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Never move master block away from goal

When this pruning is activated, the search will not expand nodes correspond-
ing to positions where the master block attempts to move away from its goal
position. The master block is said to move away if the move increases the
Manhattan distance of the block to the goal.

This enhancement removes edges from the search space graph rather than
nodes. However, some nodes might also be removed as well, due to them
becoming unreachable. This can be seen in some of the easier puzzles where
the master block never needs to diverge in order to reach goal.

However, with this enhancement, master block moves become irreversible.
Hence, we risk accepting duplicates in our search queue if we only check for
duplicates against the two previous search depths (rather than all previous
search depths) in the BFS.

Remove scattered space positions

When a move is performed, a space value is calculated from the resulting
position. Let x1, x2, . . . , xn and y1, y2, . . . , yn be the x and y coordinates of
all the spaces in the position. Equation 5.1 shows how this value is calculated.
The value is the sum of the Manhattan distances of all pairs of spaces.

n∑
i=2

i−1∑
j=1

(|xi − xj |+ |yi − yj |) . (5.1)

When this pruning is activated, only positions with a space value v ≤ t will
be expanded by the search, where t is a user-specified threshold.

Pruning: Drop most of the queue when it reaches a certain size

When the queue size at any time reaches a given size t in A* or IDA*, or the
queue size at the end of a search iteration in BFS exceeds t, the following
action is performed:

The q best positions (as measured by the heuristic evaluation function) is
kept in the queue, while the rest is dropped. In the case where several
positions have the same heuristic value and this would cause more than q
positions to be kept, the positions occurring earlier in the queue will be
preferred.
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Pruning: Movement restriction in the presence of "hanging" blocks

A block is said to be hanging if it isn’t resting against other pieces in two
non-opposing sides. If a block isn’t hanging, it’s said to be resting. When
this heuristic is activated and at least one hanging block exists in a position,
no moves will be allowed apart from moves involving the hanging block or
the master block. There are two modes for this heuristic, strict and relaxed.

• In relaxed mode, any hanging block can be moved if several exist in a
position.

• In strict mode, only the first hanging block found during the row-major
column-minor scan of the position. This strict condition only matters
if there are at least two hanging blocks in a position.

This pruning cannot be combined with the duplicate check in the BFS search
that only checks for duplicate positions in the current and the two previous
search depths. The reason is that some moves are disallowed in just one
direction. Bidirectionality is a necessary condition for this type of duplicate
check. Therefore, when this heuristic is turned on in a BFS search, a less
efficient type of duplicate check (against all previous search depths) will be
performed instead.

This pruning has no negative effects on the duplicate checking in A* and
IDA*.
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Chapter 6

Results and analysis

In this chapter we will present our results of running the program on the
puzzles in the test suite. We will report whether we solved them, the amount
of search work needed, which algorithms/improvements we used to solve
them and the optimality of the solutions found.

We are especially interested to see the performance difference between an
efficient standard breadth-first search against the best settings we could find,
on a per-puzzle basis.

We will give an in-depth analysis of the efficiency and usefulness of the
heuristics and enhancements we used.

In the "goals" section (section 1.1), we mentioned that we wished to solve a
subset of puzzles which were found to be solvable after the literature study
which is documented in chapter 2. We will discuss to which degree these
goals were reached.

Table 6.1 shows a quick summary of all the puzzles and whether they were
solved by the three algorithms we used.

6.1 How the tests were run

With such a huge parameter space that the program allowed and the limited
time available for testing, we could not do systematic runs for all puzzles,
while covering the parameter space in any sensible way. We performed the
tests using the following steps:

(i) Run standard BFS on all puzzles.

(ii) Run standard A* on all puzzles.
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Table 6.1: Summary of solved puzzles by algorithm
Puzzle BFS A* IDA* Puzzle BFS A* IDA*
Easy ! ! ! Triathlon ! !

Forget-me-not ! ! ! Magnolia !

Ithaca Turtle !

American pie ! ! Apple
Still easy ! ! Schnappi

Rose ! ! Salambo
Little sunshine Sunshine

Chair Paragon 1FG
Isolation ! ! ! Warmup ! ! !

Hyperion ! ! ! Get ready ! ! !

San ! Climb game 15D ! !

Corona Climb pro 24
Thunder The Devil’s nightcap ! ! !

(iii) Run standard IDA* on all puzzles.

(iv) For each puzzle, consider them separately and attempt to find settings
that will either solve the puzzle with the least possible search work, or
failing that, make as much progress as possible into solving the puzzle.

Possibilities for the last option include tweaking the algorithm parameters,
conjecturing that some blocks in a puzzle won’t be used and lock them, and
making a plan with subgoals for solving the puzzle.

The tests were run on two computers in NTNU’s high performance labora-
tory, Tesla (12 GB RAM) and HPC03 (8 GB RAM) running Ubuntu. A few
tests were also run on one of our personal computers, an AMD64 X2 3800+,
2.0 GHz with 2 GB RAM running Windows XP.

Usually, we ran out of memory after a while, so individual tests weren’t
running for very long, typically between half an hour and two hours.

6.2 The puzzles we solved

In this section we list the puzzles we managed to solve, and how we solved
them, as well as data like solution lengths, search effort spent and settings
used.

Table 6.2 shows the puzzles we solved, the solution length, search work
needed and which algorithm we used to achieve the least amount of work.
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Table 6.2: The puzzles we solved, number of nodes expanded.
Puzzle BFS A* IDA*
Easy 361 321 997

Forget-me-not 24,030 23,688 1,180,833
American pie - 3,246,310 3,357,760

Still easy - 8,468 572,964
Rose - 1,731,647 6,744,600

Isolation 2,635,906 2,605,176 344,389,161
Hyperion 631,845 599,941 22,552,539

San 609,603,451 - -
Triathlon - 52,376 52,397
Magnolia 487,497,593 - -

Turtle 1,112,032,359 - -
Warmup 51,312,128 53,396 271,341
Get ready 239,208,397 63,329 93,585

Climb game 15D 748,286,813 29,735,389 -
The Devil’s nightcap 142,667 138,678 26,050,814

The work needed is defined by the number of nodes examined during the
search.

Table 6.3 shows the puzzles we solved, this time we have listed the shortest
solution we managed to find, along with the search work needed in order to
find this solution, and what algorithm we used in order to achieve this result.

6.2.1 Analysis of the solved puzzles

As expected, we solved the easy puzzles with every algorithm we had at our
disposal. The easy puzzles include Easy, Forget-me-not, Isolation, Hyperion
and The Devil’s nightcap. They were all solvable with examining less than 3
million positions, and in no more than one minute. The difference in number
of nodes examined was quite similar for BFS and A*, with A* needing from
1.2% to 11% less work. IDA* needed a factor or 38 to 188 times more work,
except on Easy, where IDA* only needed 3 times more work. The very small
search space of Easy limits the extra work that can possibly be done. The
entire search space is feasible to enumerate for each of these puzzles.

Three more puzzles were solved by BFS and A*: Warmup, Get ready and
Climb game 15D. Warmup has an estimated search space size of 6.2 · 1011,
and a solution happens to exist close to the start position in the search space
graph. This puzzle was not one we expected to solve with standard BFS.
In order to solve Get ready with BFS, we needed to lock 11 of the blocks,
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Table 6.3: The puzzles we solved, solution length in steps
Puzzle BFS A* IDA*
Easy 27 27 27

Forget-me-not 116 116 116
American pie - 186 186

Still easy - 79 79
Rose - 85 85

Isolation 260 260 260
Hyperion 159 159 159

San 227 - -
Triathlon - 264 264
Magnolia 401 - -

Turtle 817 - -
Warmup 144 187 235
Get ready 177 228 228

Climb game 15D 260 1137 -
The Devil’s nightcap 888 888 888

mainly the leftmost and rightmost columns of blocks. Climb game 15D was
solvable with standard BFS, but with a search effort of 748 million positions.

With A*, we managed to solve Warmup and Get ready with significantly less
search effort than with BFS. BFS needed 960 times more work on Warmup
and 2863 times more work on Get ready. These numbers demonstrate the
strength of A* combined with a heuristic, in combination with puzzles where
it isn’t too hard to move the master block around. We used a non-admissible
heuristic which gives a huge penalty to the distance of the master block from
the goal, so A* will almost always favour positions where the master block
is closer to the goal.

With A* we also managed to solve Climb game 15D with less search effort
than BFS. BFS needed to examine 25 times more nodes. The reason is
the same as for Warmup and Get ready, we used a heuristic which gave a
huge penalty for the distance of the master block distance to its destination.
However, the blocks in this puzzle are slightly harder to rearrange and move
around. While the two previous puzzles should be pretty easy for a human to
solve, Climb game 15D is considered to be very hard, because of the irregular
shapes of many of the blocks, and the small amount of space.

With BFS we managed to solve three puzzles which we couldn’t have to solve
using A*.

We had to lock 8 blocks on Turtle and let BFS run for 10 hours. We found a
solution after examining 1.1·109 positions, making this the hardest puzzle for



6.2. THE PUZZLES WE SOLVED 71

us to solve in our test suite. The puzzle contains large blocks and irregularly
shaped blocks, which makes it hard to pack the blocks. Our A* heuristic
only takes the master block’s position and the position of the spaces into
consideration. In order to reach a position with the blocks packed in a
different way and enabling further progress towards solving the puzzle, it
might be needed to go through some intermediate, more messy positions
with slightly scattered spaces. Our algorithm won’t consider these positions
until it has considered all positions with the spaces scattered with similar ,
but shorter distances, and with the same distance of the master block to the
goal. In addition, the memory requirements for our A* algorithm is much
higher, since it needs to keep the entire set of previously examined positions
in memory. A* managed to move the master block 2 cells away from the
goal.

The reason why we managed to solve San and Magnolia with BFS and not
with A* is essentially the same as above. BFS needed a lot of search effort
in order to find a solution, too much for our A* implementation to handle.
Also, the blocks in these puzzles are awkward to pack and move around,
which is problematic for our heuristic. In order to solve magnolia with BFS,
we had to cut off all positions with a space value higher than 19. 18 didn’t
work (we cut off all paths leading to a solution), neither did 20 (the search
space became too large, we ran out of memory before finding a solution).

We managed to solve 4 puzzles with A* and IDA* that we couldn’t solve
with BFS. We can’t solve these with BFS, because of the branching factor
and exponential growth of the search tree.

Still easy is a puzzle in a medium sized grid, containing mostly 1× 1 blocks.
The puzzle is trivial to solve for a human. The amount of 1× 1 blocks make
it easy to move the master block around, so the A* algorithm is able to solve
this puzzle with very little work: 8468 positions examined.

Rose is a slightly more constrained version of Still easy. Most of the 1 × 1
blocks are replaced with 1×2, 2×1 and 2×2. This is still considered an easy
puzzle for humans. A combination of easiness of moving the master block
and a short solution sequence ensure that we can solve it with A*, though
we need to examine 1.7 million nodes.

American pie has more space than the two aforementioned puzzles, but has
slightly more awkward blocks - sizes like 4×1 and 2×3, in combination with
a master block shaped like a Z-tetromino. Because of the amount of space,
it’s not difficult to rearrange the blocks. This enables us to solve the puzzle
with A* using the heuristic with penalty for scattered spaces.

Triathlon takes place in a tall grid with little space. There are enough 1× 1
blocks to make it easy enough to rearrange the blocks. In fact, with A* we
can solve the puzzle with as little as 52376 positions examined. With BFS
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Table 6.4: The puzzles we didn’t solve
Puzzle Search depth Closest to

(BFS) goal (A*)
Ithaca 16 12

Little sunshine 9 10
Chair 41 3

Corona 98 -
Thunder 27 11
Apple 73 4

Schnappi 397 18
Salambo 12 23
Sunshine 29 9

Paragon 1FG 144 2
Climb pro 24 151 2

we ran out of memory after examining 412 million positions. Again, the
ease of maneuvering the master block is the key to the success of A* on this
puzzle, it fits our heuristic function well.

To sum it up, BFS succeeds on puzzles with a small search space, or puzzles
where a solution occur early in the search tree (Warmup is a good example
of the latter). The small memory overhead, plus the fact that we only need
to keep 3 search depths in memory at any one time, enables us to search
much deeper, making it possible to solve puzzles like San and Turtle.

Puzzles containing a small amount of space (2-6) and where it is easy to
move the master block around are handled well by A* and our heuristic. It
is also beneficial for A* that the master block moves steadily towards the
goal, and that there are no points where major rearranging and repacking is
needed while the master block is static or even moves back.

6.3 The puzzles we didn’t solve

Table 6.4 shows the puzzles we didn’t solve, along with the search depth
we reached with BFS and closest distance to the goal A* managed to get
(Manhattan distance). We did not run A* and IDA* on Corona, because
of its unique nature - interior walls and that the master must initially move
away from the goal.

As we can see from the table, the master block got close to its goal in
several puzzles. It was 2 cells away on Paragon 1FG and Climb pro 24, 3
cells away on Chair and 4 cells away on Apple. However, it is possible to
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reach a position where the master block is close to the goal (measured by
the Manhattan distance), but requires a long solution sequence to reach the
goal.

It might very well be possible that our current program is capable of solving
more puzzles - the most likely candidates in our eyes are Chair, Apple,
Paragon 1FG and Climb pro 24. Of these, Paragon 1FG has the smallest
upper bound on the search space, 3.7 ·1012. Small changes in the parameters
can have a large impact on the outcome. For instance, Magnolia was solved
using a space value of s = 19, while we couldn’t solve it with s = 18 or
s = 20. We cannot rule out that similar small changes in search parameters
for the mentioned puzzles could have resulted in us solving more of them.

6.3.1 Analysis of the unsolved puzzles

The main reason why we didn’t solve these particular puzzles is the size of
the search space in combination with irregularly shaped blocks, which makes
it hard to pack the blocks and keep the spaces together. In all cases, we ran
out of memory both when using BFS and A*. (IDA* has slightly lower
memory requirements than A*, but is much slower.) The puzzle we solved
with the largest search space upper bound was Get ready (3.4 ·1017), and the
unsolved puzzle with the smallest upper bound was Paragon 1FG (3.7 ·1012).
In a problem domain with exponential growth for each search depth, solution
length matters a lot. The shortest known solution for Paragon 1FG is 333
steps, while Get ready can be solved in no more than 177 steps. In addition
Paragon 1FG has the higher estimated branching factor of these two puzzles
(5.45 versus 3.69).

The progress we made on some of the puzzles were disappointing. We didn’t
manage to move the master block at all on Ithaca or Thunder when run-
ning A*. Both these puzzles feature awkwardly shaped master blocks, and
an initial position containing packed blocks, with the master block as the
innermost block (or close to being so), requiring tens of carefully planned
steps before the master block can be moved at all.

On Sunshine, we managed to move the master block one step down, but not
further. The element which makes this puzzle very difficult to solve even for
humans is the low number of spaces (only 5, just enough to move the master
block one step), two 5× 5 blocks and a master block whose bounding box is
also 5× 5. Each time the master block moves, the blocks behind it must be
repacked carefully in order to create new space in front of the master block
so it can move again. This puzzle has one of the longest solution sequences
in our test suite, the shortest known solution is 713 steps.

On Little sunshine, which is an easier version of Sunshine (for humans, at
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least), our program was again not able to move the master block. The
starting position is especially unforgiving, the spaces are spread across the
puzzle. Our program attempts to quickly gather the spaces in order to keep
them close, but it has no concept of good packing. In our best manual
attempt we manage to move the master block at the 61th step. Also, this
puzzle has the largest estimated search space size and branching factor of
our test suite.

We knew that our program couldn’t handle Corona in its current form, so we
made a plan for this puzzle with 6 subgoals. The subgoals roughly followed
the correct path for the master block from start to goal. With BFS we
managed to reach the second subgoal, and with A* we managed to reach
only the first. Our heuristics and enhancements are ineffective on this puzzle.
All non-master blocks are U-shaped and they are impossible to pack tightly,
rendering our improvements based on the closeness of spaces useless.

Salambo and Schnappi are, along with Sunshine and Little sunshine, the
hardest puzzles in our test suite. Schnappi is in fact almost identical to Turtle
(apart from being flipped in the Y-axis); the main difference is that the chair-
formed block is reversed, and in Schnappi the master block is trapped inside
it. Hence, we cannot do what we did on Turtle and lock the chair-formed
block and every block above it. Schnappi is the most difficult puzzle so far
to appear in the Bricks series, if we use number of people who have solved as
the metric. It has been solved only by four people. The reason it is difficult
for our program is because of the size of the puzzle (leading to a large search
space), the solution length (best known is 1069) and blocks that are difficult
to pack.

Salambo is a quite unique puzzle in our test suite. All blocks are highly
irregularly shaped, and there is a lot of space in the puzzle which results in
a large amount of possible moves, and hence a high branching factor. The
solution involves reordering many of the blocks in the corridor, as the puzzle
starts out with the blocks appearing in the wrong order for the final packing.
The blocks in the main chamber must be packed in order to swap some of
the blocks in the corridor, and then everything must be repacked in order
to give room for the master block. For a program to be capable of solving
this puzzle, it should be able to find a way to pack the blocks in the main
chamber, and find a way to achieve this packing. This includes detecting
that the blocks in the corridor need to be reordered, and performing the
reordering as well. This puzzle could benefit from other areas of artificial
intelligence, such as planning, which could be combined with search. Not
surprisingly, our program made little progress on Salambo - it managed to
move the master block two steps.
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Table 6.5: Number of nodes expanded, by algorithm
Puzzle BFS A* IDA*
Easy 361 321 997

Forget-me-not 24,030 23,688 1,180,833
Isolation 2,635,906 2,605,176 344,389,161
Hyperion 631,845 599,941 22,552,539
Warmup 51,312,128 53,396 271,341
Get ready 181,324,037 63,329 93,585

Climb game 15D 748,286,813 29,735,389 -
The Devil’s nightcap 142,667 138,678 26,050,814

6.4 The efficiency of the algorithms, heuristics and
improvements

In this section we will first look the different algorithms and what kind of
puzzles they did well at. We will also look at each improvement and see how
well they performed.

6.4.1 Comparison of algorithms

Table 6.5 shows the number of number of nodes expanded for each algorithm
for the puzzles that we managed to solve with both BFS and A*.

A* is consistent at solving puzzles with less work than BFS and IDA*, though
A* in several cases just barely beats BFS. Also, A* beats the other algorithms
in solving the most puzzles.

Because of the lower overhead for running BFS and the savings achieved by
the efficient duplicate check, our implementation of BFS is able to search
deeper than A*, thus being able to find some solutions that A* can’t find.
The solution for puzzles like San and Turtle is currently out of range for our
A* implementation.

As pointed out in section 6.3.1, A* performs well on puzzles where it is
easy to move the master block forward, and where there is very little risk
of reaching a jammed position when doing so. The number of spaces in the
puzzle does not matter too much as long as the first property holds.

IDA* is dominated by A*. This is even though IDA* can solve every puzzle
that A* can solve (with one exception). IDA* just needs more resources to
achieve the same result. We make a special note of the resource usage on
puzzles such at Isolation and The Devil’s nightcap. The pathlimit is raised
a lot of times for these puzzles, causing IDA* to run a lot of iterations. Due
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to the low effective branching factor, the last iteration does not dominate
the previous ones in execution time, which results in a lot of extra work.
IDA* was designed to exploit that search trees grow exponentially with a
high branching factor, but that does not happen in all the puzzles in our test
suite.

One possible way to improve IDA* is to improve the pathlimit exponentially,
instead of increasing it with the lowest total cost that exceeds the pathlimit.
For a chosen p > 1, the ith iteration could have a pathlimit of l · pi where
l is the initial pathlimit. The p should be chosen sufficiently large in order
to avoid running too many iterations. A scheme where the pathlimit grows
dynamically could work as well, as long as it grows exponentially.

6.4.2 The heuristic function

We achieved poor results when we used the admissible heuristic, which only
uses the Manhattan distance of the master block to the goal. Our improved
admissible heuristic (which turned out to return non-admissible values for
Isolation) didn’t work much better, they were a poor fit to the actual cost.
Even if we weight it in an attempt to match the actual cost, the fact that it
doesn’t take the spaces into account still makes it poor.

The h2 heuristic with penalties worked much better than the admissible
heuristic. Adding a penalty for the distance of the spaces to the master
block enabled the search to distinguish between positions where the master
block was in the same position. Without this penalty, we could not solve
Climb game 15D with A*. However, the solutions found using this heuristic
can be far away from the optimal solution length. For example, using the h2

heuristic we found a solution 75% longer than the optimal solution.

There are still concepts that our heuristic function doesn’t consider. Our
heuristic cannot detect if the blocks immediately in front of the master block
are easy or hard to move. In some cases the master block can’t progress,
because it is stuck in front of large blocks or awkwardly shaped blocks. We
believe that a heuristic function able to detect these situations can perform
much better.

6.4.3 Pruning: Space value

The space value pruning reduces the search space by eliminating all positions
where the sum of Manhattan distances of all pairs of spaces exceed a given
threshold. This can affect the solvability of a puzzle if the threshold is chosen
too low.



6.4. THE EFFICIENCY OF THE ALGORITHMS, HEURISTICS AND IMPROVEMENTS77

Table 6.6: The space value effect on Forget-me-not
Forget-me-not

Solution Space value Work Search space
length cutoff needed size

- 2 184 184
118 3 14,756 15,673
118 4 19,599 20,831
116 5 22,579 24,129
116 ∞ 24,030 25,955

Table 6.7: The space value effect on Isolation
Isolation

Solution Space value Work Search space
length cutoff needed size

- 26 976,881 976,881
351 27 1,462,558 2,097,238
346 28 1,556,674 2,267,778
324 29 2,334,005 3,951,586
316 30 2,456,681 4,170,850
315 31 2,584,478 4,401,008
266 32 2,447,171 4,686,394
262 33 2,496,235 4,833,786
260 34 2,548,059 4,956,468
260 ∞ 2,635,906 5,129,684

Since we have several puzzles in our test suite where the entire search space
can be examined, we can take a look on how this pruning affects the search
space.

In tables 6.6, 6.7 and 6.8 we have listed the search space size, search effort
needed to solve and solution length for various space value cutoffs for the
puzzles Forget-me-not, Isolation and The Devil’s nightcap. As we can see,
we are not guaranteed to find optimal solutions any longer. Lowering the
cutoff sufficiently results in a longer solution length or no solution at all if
the cutoff is too low.

Unfortunately, it was not feasible to investigate larger puzzles because of the
time required to do these runs. Given more time to run our program, we
could have investigated Hyperion, Climb game 15D and San, among others.
All puzzles listed in the tables take place in small grids and might not give
a correct picture of the savings we can achieve on larger puzzles.

Table 6.9 shows the ratio of the search work (positions examined) in the
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Table 6.8: The space value effect on The Devil’s nightcap
The Devil’s nightcap

Solution Space value Work Search space
length cutoff needed size

- 4 9234 9234
894 5 132,616 447,186
890 6 138,742 482,216
890 7 141,729 493,635
888 8 141,531 497,872
888 ∞ 142,667 497,872

Table 6.9: Search space and search work savings
Puzzle Ratio Ratio

search work search space
Forget-me-not 0.614 0.604

Isolation 0.554 0.408
The Devil’s nightcap 0.929 0.898

reduced search space compared to the search work in the full search space,
as well as the ratio of the reduced search space compared to the full search
space. To determine the reduced search space, we used the lowest space
value cutoff such that the puzzle was still solvable.

For these three puzzles, the best reduction we achieved was a near half
reduction in the search effort for Isolation. For The Devil’s nightcap, the
search effort was only reduced by around 7%. However, these three puzzles
are small, contain little space and the solution sequences range from medium
to extremely long.

For Isolation, we notice that decreasing the cutoff can lead to more search
work before finding a solution. When reducing the cutoff from 32 to 31,
the shortest solution length increased from 266 to 315, and the search work
increased by 4.5%.

We suspect that the savings in search effort are much larger for puzzles with
in larger grids with larger search spaces. The only real indication we have for
this suspicion is the fact that we solved Magnolia using BFS, with space value
pruning as the only enhancement. We chose the lowest cutoff that enabled
us to solve the puzzle, the search examined 487 million positions. Hence,
when we decreased the cutoff by one, we couldn’t find any solution after
searching through the whole reduced search space. When we increased the
cutoff by one, we ran out of memory after examining 525 million positions.
In fact, Magnolia was the only puzzle in our test suite where this pruning
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Table 6.10: The effect of the resting blocks pruning for Hyperion
None Relaxed Strict

Solution length 159 164 164
Work needed 631,845 643,796 642,024

was crucial for solving.

As mentioned in section 6.4.2, the space value function was incorporated
into our A* heuristic function as a penalty. Combined with another penalty
for the position of the spaces, we managed to solve additional puzzles like
Triathlon and Climb game 15D with A* (even though we solved the latter
puzzle with standard BFS).

We consider this a worthwhile enhancement to both the BFS and A* algo-
rithms.

6.4.4 Pruning: Resting blocks

This improvement comes in two variants, relaxed and strict. The difference
is that in the strict mode, the first hanging block found during the scan of
the position has to be moved, if any hanging blocks exist. In relaxed mode,
any of the hanging blocks can be moved. If no hanging blocks exist in a
position, every legal move is permitted and no pruning occurs.

It is hard to measure the usefulness of this improvement. When we tested it
on large puzzles, we saw huge reductions in the search tree. However, as we
didn’t solve these large puzzles, we cannot know if we these savings would
be lost by increasing the length of the solution that would have been found
it we could run the search to its conclusion.

On small puzzles with little space, we found that this improvement had little
effect. With two spaces, there is no difference in the relaxed and strict modes,
as there can be at most one hanging block. Tests performed on Hyperion
show that the search work is increased, due to an increase in the solution
length. Table 6.10 shows the data. Tests performed on Easy, Forget-me-not,
Isolation and The Devil’s nightcap show that almost every position in the
search space can eventually be reached, but the sequence of moves required
to reach a given position might increase. Hence, the savings in the search
space for small puzzles are negligible. We don’t know if this is the case for
larger puzzles.

Table 6.11 shows the size of the portion of the search space examined after
searching to depth n for the puzzle Ithaca, for some selected search depths.
We see that the savings in the search tree size are huge, but as mentioned
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Table 6.11: Search space sizes after depth n on Ithaca
n None Relaxed Strict
5 4743 753 623
10 563804 52871 40609
15 28196019 1707573 1205741
16 58264526 3225476 2231504
17 - 6012024 4075861
18 - 10972739 7366767
19 - 20326280 13217385

previously, we don’t know if we lose the savings because we might find a
solution at a later search depth.

However, we believe that this enhancement could have been useful if we were
able to search further into the puzzles with lots of space, like Ithaca. If there
are hanging blocks in a position, more hanging blocks cannot be introduced,
except as a consequence of moving an existing hanging block.

However, another disadvantage is that this is a rather expensive enhance-
ment, it increases runtime by a bit since the position has to be scanned for
hanging blocks before performing child generation.

6.4.5 Pruning: Never move the master block away from its
goal

When this option was turned on, a move that increased the Manhattan
distance of the master block to the goal was disallowed.

We did not use this option on many puzzles. When we used it and it worked,
the savings in search work were not significant, and it didn’t enable us to
solve more puzzles. The only positions removed from the search tree are
those positions where the master block is not contained in the bounding
rectangle containing the start position and the goal position of the master
block. In some puzzles, this results in very small savings. One such case
is Ithaca, where the master block never needs to move back, but the only
positions removed from the search space are those there the master block is
in the bottom row, which accounts for around 16.7% of the positions.

There aren’t many puzzles where there exists a solution such that each move
of the master block decreases the Manhattan distance to the goal. Eligible
puzzles for this improvement are Easy, Still easy, Rose, Ithaca, Sunshine,
Little sunshine. It is unknown whether it is possible on other puzzles. For
Sunshine and Little sunshine, we manage to reduce the search space by
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90.9%. However, this is a part of the search space that is likely to not be
examined by an A* algorithm, so these savings are not useful.

6.4.6 Plan with multiple subgoals

We ended up not using this improvement very much. In most puzzles, it
is not clear what route the master block is going to take. However, it is
easier to identify problematic blocks and figure out that it would be a good
strategy to place them in a corner where they won’t be in the way of the
master block.

We used this feature on three puzzles only - and it was not essential in solving
more puzzles. For Magnolia, we made plan with 7 subgoals where the master
block followed the same path as in our manual solution to this puzzle. We
didn’t specify any of the other blocks in the subgoals. Our program (using
BFS) was able to reach the second subgoal, but not able to find the third
subgoal. It means the master block managed to move around a third of its
total length to the final goal. We eventually managed to solve Magnolia
without subgoals.

For Corona, we made a plan with 6 subgoals where the master block take
the shortest way around the walls to the goal. Our program managed to
reach the second subgoal, but not the third. It managed to move the master
block to the top center of the board, but not the next intermediate position
exactly in the middle of the board. The master block was moved one third
of the total path length to the goal.

For Paragon 1FG we made a slightly different plan than for the two puzzles
above. We made one intermediate subgoal (in addition to the actual goal),
where the master block had moved past the 3 × 2 block. We didn’t mange
to solve the puzzle with this plan. In fact, the first subgoal wasn’t reached.

One weakness with this enhancement is that when we reach a subgoal, the
first position reaching the subgoal is used at the starting position for the
search towards the next subgoal. This position might not be a very good
one, and in some cases there might not exist a path from this position to
the goal without backtracking the steps that was made in order to reach this
position.

We suggest two ways of improving the performance of this enhancement:

• Let the user specify a more detailed plan. To avoid reaching a subgoal
with a position where it is difficult to make further progress, the user
can specify additional constraints that must hold in order to reach the
subgoal. Additional constraints can include the position of problematic
blocks.
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• Change the algorithm. Instead of taking the first position, we can
search until we have n positions satisfying the subgoal. Some checks
can also be made to avoid having positions that are too similar.

We did not benefit from this enhancement in the tests we did on the puzzles
in our test suite. For any given puzzle, we can always start with a plan and
make it more detailed until we solve it, but this way of solving a puzzle is less
than satisfying. A more interesting problem is the automatic construction
of such a plan, based on analysis on the starting position.

6.4.7 Queue management

When this option is turned on and the size of the queue exceeds a given
threshold, it is emptied and only the q best positions are kept. The positions
are ranked according using our h0 heuristic - Manhattan distance of master
block to goal. In the case of a tie, the positions that occur earlier in the
original queue are picked.

This is another improvement we ended up using very little. We weren’t able
to solve any new puzzles using this improvement.

The main problem is that we chose to use a simple heuristic when picking the
best position. After a few queue flushes, the queue often ends up containing
only positions where the master block is at the same place. In this case, the
first positions are always picked from the queue and we eventually enter an
infinite loop.

This can be improved by refining the criteria for picking the best positions
to keep. We could instead come up with a better heuristic, or we could even
define some criteria specific to the puzzle we are trying to solve. Instead
of keeping exactly q positions, we could instead drop all positions satisfying
some criteria describing a bad position, for instance if the master block hasn’t
moved at all.

6.5 Summary

With BFS, we managed to solve all the puzzles with small search spaces,
and the puzzles where a solution occurs early in the search tree. We also
managed to solve the puzzles where a solution occurs after examining as
much as 109 positions. We managed to search this far because of the lower
memory requirement for our BFS algorithm, compared to our A* algorithm.

With A*, we managed to solve all with puzzles containing a small amount of
spaces (2-6) and where it is easy to rearrange the blocks. In these puzzles,
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it is possible to move the master block steadily towards the goal, and these
puzzles don’t require major reshuffling of the other blocks at any stage.

Of the 26 puzzles in our test suite, 11 of them were not solved by our pro-
gram. The following list contains characteristics that occurred in many of
the puzzles we didn’t manage to solve.

• The search space sizes are typically larger than 1016.

• The puzzles feature large blocks, or many irregularly shaped blocks.

• The blocks are hard to move around, many moves lead to positions
where no progress is eventually possible.

• It is hard to advance the master block towards its goal, it may require
a high number of intermediate moves between each move where the
master block advances.

• Long solution sequences.

• Excessive amounts of space.

• The search spaces can have dead ends. Moves can lead to positions
where no further progress is possible. This includes positions where
the master block is close to its goal.

Our program managed to move the master block as close as a Manhattan
distance of 2 to its goal on some of the puzzles. Having such a position
does not mean that we are close to a solution. In some cases, our program
managed to move the master block close to the goal early, but still didn’t
manage to solve the puzzle.

Even with a memory-efficient representation of a position, running out of
memory was our biggest problem. This was a larger obstacle for us than
the execution time of our program, even though our program was not very
efficient in terms of speed.

Here is a summary of the various heuristics and enhancements we used.

Admissible heuristic

Our admissible heuristic function, returning the Manhattan distance between
the master block and its destination, was very far from being a good fit to
the actual cost function. In the worst cases, it returned values several orders
of magnitude lower than then actual cost. This heuristic didn’t contribute
towards solving new puzzles.
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Non-admissible heuristic

Our non-admissible heuristic function was a very valuable addition to our
program. The key was that in addition to using the original admissible
heuristic and scaling it in order to making it match the actual cost function
better, we added penalties based on the positions of the spaces. This heuristic
ensured that the A* algorithm was given much better guidance towards goal
states, reducing the search work by a factor of up to 3000. Non-admissible
heuristics enabled us to solve 4 puzzles which we couldn’t solve with other
improvements. The disadvantage of this heuristic is that it involves a lot of
experimentation to find good parameters to use. Using this heuristic with
the wrong parameters results in much more search work, and in the worst
cases more work than the BFS algorithm needs.

Pruning the search space: space value

The purpose of this improvement was to cut off positions with too scattered
spaces from the search space. This improvement worked very well in some
cases. For puzzles taking place in a large grid containing few spaces (2-4), we
believe this improvement results in a large reduction in the search space. This
reduction was sufficient to make one new puzzle solvable that we couldn’t
solve without this improvement. The disadvantage is that experimentation
is required in order to find a good cutoff threshold. If the threshold is too
low, the puzzle becomes unsolvable and if the threshold is set too high, the
search space savings are no longer significant.

Asserting that some blocks never need to be moved

This is not an algorithmic improvement as such, but rather a modification
that could be applied to a puzzle before we ran our program. The purpose of
this improvement is to analyse the starting configuration of a puzzle before
attempting to run our program on it, and conjecture that some blocks don’t
need to be moved in order to solve the puzzle. Then, the input file to
the program is modified such that these blocks are locked into place. This
improvement doesn’t apply to many puzzles, because in most cases, every
block need to be moved at some point. Still, we gained one new puzzle solved
with this improvement. On the few puzzles that this improvement works,
massive reductions in search space size are achieved.
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Table 6.12: The contribution of the various improvements
Improvement New puzzles solved
Non-admissible heuristic 4 (American pie, Still easy, Rose, Triathlon)
Pruning based on space value 1 (Magnolia)
Locking of blocks 1 (Turtle)

Pruning moves in the presence of hanging blocks

The purpose of this improvement was to reduce the amount of hanging blocks
in a position at any one time. This improvement didn’t work as well for us. It
resulted in a slightly lower branching factor, but at the same time increased
the solution length. These two effects had the tendency to cancel each other
out, resulting in no savings in search work needed. We didn’t manage to
solve any more puzzles using this improvement.

Subgoals

The purpose of this improvement was to allow a puzzle to have multiple sub-
goals before the final goal position. Unfortunately, this did not work very
well for us. We believe that one implementation detail made this improve-
ment worse: When reaching a subgoal, a new search with the next subgoal
as its goal was started, using the first position that reached the previous
subgoal as the only element in the queue. This one position could be a dead
end in the search space. We didn’t manage to solve new puzzles using this
improvement.

Pruning: Don’t allow the master block to move away from its goal

This improvement didn’t work well for us, as in most puzzles, the master
block needs to make moves that increase its distance to the goal.

Emptying the queue when it becomes too large

This is another improvement that didn’t work well for us. In order to find
the best positions to keep, we ranked them according to the distance of the
master block to its goal. We believe this criterion was too coarse. We did
not manage to solve any new puzzles using this improvement.

Table 6.12 shows how much each improvement contributed. Each improve-
ment is listed, along with the puzzles we wouldn’t be able to solve without
this improvement.
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To wrap up this chapter, we present the main lessons we learned.

• The complexity of this domain is formidable, resulting in large search
spaces which represent a significant challenge. As a consequence, the
bottleneck of our program was memory limitations rather than execu-
tion time.

• Domain-specific improvements are needed in order to overcome the
complexity. All of the 6 new puzzles solved can be attributed to
domain-specific enhancements.

• Designing a good heuristic function is of utmost importance. Our
heuristic function, which reduced the search work by up to a factor of
3000 compared to BFS, was not able to do much progress on the harder
puzzles. Our heuristic function was not armed with enough knowledge
about the domain. It didn’t know about the concept of having small
and easily movable blocks near the master block, which we identified
as a reason for not being to solve more puzzles.

• Small adjustments in the parameters for our enhancements can have
a large impact on the result. We solved one extra puzzle because we
found a working parameter value. Values in the neighbourhood of the
value we used didn’t work.

• We learned that one cannot use the same algorithm as others have
successfully used, and expect this to be equally successful. We imple-
mented IDA*, but its performance was less than satisfactory. There
are at least two reasons for this: The growth of our search trees don’t
fit the IDA* algorithm. A solution can occur at the end of the search
tree when we have searched through most of the search space, and at
this stage, there can be less nodes at depth i + 1 than at depth i. An-
other reason is that our admissible heuristic gave too low estimates to
the solution length, resulting in many iterations. Our non-admissible
heuristic caused IDA* to behave more erratic. In either case, IDA*
needed much more resources to achieve the same results as A*.



Chapter 7

Future work

In this section we will identify some of the problems remaining in our pro-
gram. We will also suggest some ways to enhance the program.

7.1 Improved heuristic function

The A* and IDA* algorithm is currently suffering because of a non-tight ad-
missible heuristic. In puzzles like Isolation, our admissible heuristic estimate
is as low as 1.1% of the actual cost. A much better admissible heuristic will
be of great benefit for A* and IDA* and could lead to more puzzles being
solved.

In addition, the non-admissible heuristic we used could still be improved. We
concluded that we couldn’t solve a couple of puzzles because our heuristic
function doesn’t know about the blocks between the goal and the master
block. If they are small and easy to move, it can lead to a much easier time
finding a solution. If we can add a penalty for less maneuverable blocks in
front of the master block in the direction of the goal, we believe that our
program could perform better and possibly solve some more puzzles.

7.1.1 Pattern database

In section 4.3.4, we did a little test to determine the usefulness of pattern
databases for the puzzle The Devil’s nightcap. In this case, each database
became larger than the search space of the puzzle itself, rendering it use-
less. It remains to investigate the usefulness of pattern databases on other
instances of sliding-block puzzles.

Here are two suggestions on how to make pattern databases.

87
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• Remove blocks until state space in reduced puzzle is feasible for a full
breadth-first search. Then, do a full search and store the distance to
goal for every position. One problem is to determine which blocks to
remove, and another weakness is that the bound might be a very bad
fit to h∗, the actual cost function.

• Replace larger blocks with 1x1 blocks until the search space in the re-
duced puzzle is feasible for a full BFS. Then do as above. However, if
all steps have cost 1, we risk overestimating since we filled our puzzle
with many 1x1 blocks. One possible solution is to give each 1x1 block
a new cost: 1

k where k is the size of the largest block replaced with 1x1
blocks. This can result in a tighter bound than the above suggestion,
since we are not adding more space from the puzzle. Some disadvan-
tages are that it might not be possible to bring the search space down
to a feasible size for large puzzles, and we cannot do a standard BFS
in the search space because the moves now have different costs.

7.2 Transposition table for IDA* with more fea-
tures

When a good heuristic function is in place, one possible next step is to
improve the transposition table.

Currently, the implementation of IDA* has a very simple transposition table
which is a set containing positions we have seen so far in one iteration.
This enables us to avoid cycles, but no information is carried on between
iterations.

The IDA* algorithm will benefit from a transposition table with the following
properties:

• Fast lookup - check if a position is in this table.

• For each item in table, maintain a counter which increases for each
access.

• Ability to throw out least recently used or least frequently used items.

• Ability to update upper bound for solution length when same position
is checked more than once.
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7.3 Store the solution

The current implementation doesn’t support displaying the solution, nor is
the solution stored. Depending on the options used in our program, older
search depths are dropped, which makes reconstruction of the solution im-
possible. Also, no links are stored between parent and child positions.

If we don’t drop old positions, we can reconstruct the path by doing a back-
ward search. From the goal positions we found, we can try all moves and try
to reach a position in the previous search depth. Repeat until we’ve found
the start position.

7.4 Post-processing

We have found many non-optimal solutions using non-admissible heuristics
and pruning that don’t guarantee optimal solutions. Especially the space
value pruning can lead to contrived solutions.

Given that we have one solution, we can post-process it to make it shorter.
For any given pair of positions, one could attempt to find a shorter sequence
of moves that connect them.

7.5 Considering moves instead of steps

Change the state transition from steps to moves, and attempt to find heuris-
tics based on this kind of move. The Manhattan distance heuristic cannot
be used any more, but it would be interesting to see whether a good heuris-
tic based on pattern databases could possibly perform better using moves
instead of steps. Using moves instead shortens the solution length, albeit at
the cost of increasing the branching factor.

7.6 Optimisations

This section will list optimisations that can be applied to the existing algo-
rithms, rather than suggestions for new algorithmic enhancements.

7.6.1 Speed

The current program isn’t very fast, it is a factor of 6 slower than our old BFS
program. It is advisable to write a new program and drop the enhancements
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Table 7.1: Number of bits needed to represent positions in some selected
puzzles

Puzzle name Number of bits Number of bits
Huffman coding permutation rank

Easy 19 11
Forget-me-not 26 19

Ithaca 119 100
Still easy 51 39
Isolation 39 31

Paragon 1FG 70 52
The Devil’s nightcap 37 28

which were found to be of less use.

7.6.2 State representation using permutation rank

Consider a string containing each block in a puzzle, including spaces. A
position can be constructed from a permutation of this string, as mentioned
in section 2.6.1.

We can achieve a more compact state representation by using the permuta-
tion rank: an integer between 0 and p− 1, where p is the number of distinct
permutations of the string of blocks, which is identical to the packing bound
we introduced in section 2.6.1. This representation will lead to savings in
memory usage in most cases. See the examples of savings below.

The existing state representation is also very memory compact, so this im-
provement isn’t essential, it’s just rather nice.

For performance and ease of implementation, a position is stored at the be-
ginning of a byte in memory. The size of the representation is then effectively
rounded up to the nearest 8 bits.

Table 7.1 shows the number of bits needed to represent a position using
Huffman coding, and the number of bits needed to represent a position using
permutation rank, without rounding up.

This representation automatically suggests another way for doing duplicate
checks - have a boolean vector of size n, where n equals the packing bound
of the puzzle, assuming this vector is possible to store. With such an array,
duplicate checks can be done in constant time, simply by looking up the
position in the vector, using its permutation rank as the index.
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7.6.3 State representation using a trie

Wang [24] suggests another representation, based on the initial permutation
of the string which contains each block and space.

Positions can then be inserted into a trie. If two positions share the same
prefix for the first p positions, their subtrees will diverse at depth p in the
trie. The amount of memory needed to store the trie is dependent on the
order of the items in the permutation.

7.7 Macro moves

This improvement can potentially be very beneficial. One can imagine macro
moves taking the master block from one corner to another in a subboard of
a puzzle.

However, it is not clear how to define a macro move and when it should
be applied in order to save search space size. Nevertheless, macro moves
have been used with success in other domains like Sokoban, and it should be
investigated further whether it is useful for sliding-block puzzles.

7.8 Parallelism

One can’t overlook the potential savings of dividing the work between tens
or hundreds of processor cores. However, care must be taken in the design
of the algorithm and memory layout. In general, converting serial programs
to parallel programs is hard.

Most of the steps in a BFS algorithm with delayed duplicate checking (like
our old solver) can be parallelised. Each position in the queue is independent
of the others, and the children positions of each position can therefore be
generated in parallel. The duplicate check itself can also be parallelized, since
parts of the queue can be checked for duplicates independently. The last step
of doing a mergesort on the files that together comprise the complete search
depth is harder to parallelise, but there exist efficient parallel algorithms for
mergesort that run faster than a sequential mergesort.

7.9 Further potential for improvements

In this project, one person has been working for a limited time doing research
and implementing a program that solves sliding-block puzzles.
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We believe there is a vast potential for applying existing methods and dis-
covering new improvements that can push the best results in this domain
even further. We have not yet looked outside the field of search algorithms.

We believe that a sliding-block puzzle solving program can benefit from other
areas of artificial intelligence, like planning.
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Conclusion and summary

In this project, we have looked at how we can construct a computer program
that solves sliding-block puzzles.

We looked at the available published literature and looked at how others
have solved sliding-block puzzles and similar problems before, and learned
about some algorithms and methods that could be used.

Then, we did an analysis of our domain, and found some properties that
could be used in order to make our implementation more efficient. We also
suggested some domain-specific ideas to implement. We selected 26 puzzles
from different sources, which became our test suite, the puzzles on which we
would try out our new methods.

During the domain analysis stage, we discovered an efficient method of cal-
culating the exact number of possible configurations for a given puzzle. This
enabled us to get a upper bound of the search space size that was two to
five orders of magnitude lower than a simple bound using combinatorics. We
managed to calculate this upper bound for two thirds of the puzzles in our
test.

We then implemented a sliding-block puzzle solving program using the algo-
rithms and methods we found during the literature study, and the domain-
specific ideas we developed during our analysis of the problem domain. We
implemented BFS, A* and IDA* with several improvements that should re-
duce the search space size.

We then measured the performance of our program against a very efficient
BFS implementation, as well as measuring the progress of our program on
the difficult puzzles it didn’t manage to solve.

With some of the enhancements we implemented in our program, we were
able to significantly reduce the computational work needed in order to solve
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easier puzzles. We also managed to reduce the search space size by eliminat-
ing non-promising positions.

Our program managed to solve 6 new puzzles that the efficient BFS program
wasn’t able to solve. The biggest contribution came from our domain-specific
improvements. The non-admissible heuristic used in the A* algorithm had
the largest impact on the number of new puzzles solved. The heuristic func-
tion estimates the distance to a solved position based on the position of the
master block and its distance to its destination, the positions of the spaces
relative to the master block and how scattered the spaces are in the grid.
Other valuable domain-specific improvements include pruning positions with
scattered spaces from the search space, and not allowing certain blocks in a
puzzle to move, which also greatly reduces the search space size.

Despite the numerous reports of using IDA* with success in other similar
single-agent domains, IDA* performed poorly at solving sliding-block puz-
zles. The two main reasons we could identify were the nature of our non-
admissible heuristic function and the behaviour of the search trees generated
from the search space graphs. In our experience, our heuristic function gave
the best results when we allowed it to overestimate the cost to a goal node.
Overestimation causes IDA* to wrongly increase its limit for the maximal
solution length (pathlimit), resulting in extra work. The other reason is that
the search tree grows exponentially at first, but this growth is often reduced
later in the search tree, and sometimes the size of a given search depth shrinks
compared to the previous search depth. The efficiency of IDA* is based on
the assumption that the work done in the last iteration will dominate the
sum of the work done in all previous iterations. This assumption does not
hold for our domain.

Sliding-block puzzles turned out to be a very complex domain, which re-
sisted the use of traditional methods. Traditional algorithms with broadly
applicable heuristics (like the Manhattan distance) can at most give small
reductions in search effort. We were dependent on the use of domain-specific
enhancements to overcome the complexity.

There are still a lot of interesting ideas to explore in this domain. We only
got the chance to explore a few of the ideas we had. We refer to chapter 7
for some areas where additional research can be beneficial.
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Appendix A

Test suite

Each figure consists of two positions: The one to the left shows the starting
position, and the one to the right shows the goal condition. The shaded gray
area is "don’t care" - only the blocks and spaces specified are required to be
at the designated positions.

Many of these puzzles are slightly modified. Some of the puzzles originally
contained special elements not included in the domain as we have defined it.
In almost every case, this resulted in a slight relaxation in the constraints
of the original puzzle. There is one exception, our version of Turtle is much
harder than the original version.

(a) Easy (b) Forget-me-not
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(c) Ithaca (d) American pie

(e) Still easy (f) Rose

(g) Little sunshine (h) Chair

(i) Isolation (j) Hyperion
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(k) San (l) Corona

(m) Thunder (n) Triathlon

(o) Magnolia (p) Turtle
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(q) Apple (r) Schnappi

(s) Salambo (t) Sunshine

(u) Paragon 1FG (v) Warmup

(w) Get ready (x) Climb game 15D
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(y) Climb pro 24 (z) The Devil’s nightcap
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