Varying Permeability Model (VPM)
Decompression Program in Fortran

Presented by Erik C. Baker

This program extends the 1986 VPM algorithm (Yount & Hoffman) to include
mixed gas, repetitive, and altitude diving. Developments to the algorithm were
made by David E. Yount, Eric B. Maiken, and Erik C. Baker over a period from
1999 to 2001.

This work is dedicated in remembrance of Professor David E. Yount who passed
away on April 27, 2000.

Distribute freely - credit the authors.

Introductory Notes:

1.

This paper includes an explanation about the program settings and the
altitude dive algorithm settings, a sample input file format, a sample
program output, and the program code in Fortran. The intent is that
readers will be able to port the code to the programming language and
operating platform of their choice. This program does not include the
coding for a graphical user interface - that is left for the users to
implement.

While there are some similarities to Haldanian decompression algorithms in
this program, there are many differences. Ascent ceilings are determined
based on allowable gradients for bubble formation rather than M-values.
These supersaturation gradients are determined by tracking sets of VPM
nuclei (bubble seeds) of a certain initial critical radius. These are the
microscopic physical structures that stabilize free-phase gas and that can
grow into full-fledged bubbles when the supersaturation gradient is
sufficient to probe the Laplace condition for bubble formation.

VPM ascent profiles are characteristically different than Haldanian ascent
profiles. Most notable is that deeper initial stops are required in the
profiles and typically less time is required at the shallow stops. The
conclusion to be drawn from this is that if you don’t allow many bubbles
to form in the early portion of the ascent profile, you won’t have to
spend as much time in the latter portion resolving bubbles.

There are two options for the determination of allowable gradients - a
constant bubble number approach and a dynamic critical volume approach.
This program will compute either depending on whether the Critical Volume
Algorithm is toggled on or off. If it is off then a fixed constant bubble
number gradient determines the ascent profile. If it is on then the
algorithm will relax the allowable gradients, deliberately allowing some
bubbles to form, as long the amount of excess released-gas does not exceed
a predetermined critical volume (this limit is set by the Critical Volume
Parameter Lambda). The Critical Volume Algorithm will have the most
noticeable effect for short dives in the no-deco range, but very little
effect for long decompression dives. Users simply need to work with the
algorithm for a while to develop an understanding of its behavior.

Varying Permeability Model (VPM) Decompression Program in Fortran

VPM Program Settings in the file VPMDECO.SET:

&Program_Settings

Units="'"fsw' !0Options: fsw or msw

Altitude Dive Algorithm='OFF' !Options: ON or OFF

Minimum Deco_Stop_Time=1.0 !0Options: real positive number
Critical Radius N2 Microns=0.8 !Adj. Range: 0.2 to 1.35 microns
Critical Radius He Microns=0.7 !Adj. Range: 0.2 to 1.35 microns
Critical Volume Algorithm='ON' !Options: ON or OFF

Crit Volume Parameter Lambda=7500.0 !Adj. Range: 6500 to 8300 fsw-min
Gradient Onset of Imperm Atm=8.2 !Adj. Range: 5.0 to 10.0 atm
Surface Tension Gamma=0.0179 !Adj. Range: 0.015 to 0.065 N/m
Skin Compression GammaC=0.257 !Adj. Range: 0.160 to 0.290 N/m
Regeneration Time Constant=20160.0 !Adj. Range: 10080 to 51840 min
Pressure Other Gases mmHg=102.0 !Constant value for PO2 up to 2 atm
/

Notes:

5. Adjustability range for Critical Radii according to research by Yount and

10.

colleagues. DEFAULT VALUES ARE 0.8 FOR NITROGEN AND 0.7 FOR HELIUM. For
dives involving exertion, cold water, dehydration, diver in poor or fair
physical conditioning, or other predisposing factors to DCS, the critical
radii should adjusted upwards to 1.0 for nitrogen/0.9 for helium (moderate
conservatism) or 1.2 for nitrogen/1.1 for helium (heavy conservatism) .
Values below the defaults should only be used by skilled divers in good or
excellent physical conditioning, with no predisposing factors to DCS, and
after several work-up dives decreasing the values in small increments to
verify suitability of the lower values.

Adjustability range for Critical Volume Parameter Lambda according to
Wienke. DEFAULT VALUE IS 7500 FSW-MIN. This applies whether the program
is set to fsw units or msw units. Conversion to Pascals-min for
calculations will be made automatically by the program.

Adjustability range for Gradient for Onset of Impermeability according to
research by Yount and Hoffman. DEFAULT VALUE IS 8.2 ATMOSPHERES (this is
a pressure gradient value, not an absolute pressure). It should be noted
that Yount and Hoffman reduced the value to 5.0 atm for helium (heliox)
dives. A lower number will make the deco profiles more conservative.

Adjustability ranges for Surface Tension Gamma and Skin Compression GammaC
according to Wienke. DEFAULT VALUES ARE 0.0179 GAMMA AND 0.257 GAMMAC
(based on research by Yount and colleauges).

Adjustability range for Regeneration Time Constant according to Wienke.
DEFAULT VALUE IS 20160 (this is equal to 2 weeks, the value used by Yount
and Hoffman) .

Constant pressure for other gases - oxygen, carbon dioxide, and water
vapor according to Yount and Lally. This is supposedly valid for partial
pressures of oxygen up to 2.0 atmospheres absolute which would contain all
the typical exposures for technical diving. The value is given in
millimeters of mercury based on the original research, however it is
automatically converted to the proper pressure units in the program,
whether set to fsw units or msw units.

Varying Permeability Model (VPM) Decompression Program in Fortran

VPM Altitude Dive Algorithm Settings in the file ALTITUDE.SET:

&Altitude Dive Settings

Altitude of Dive=0 !Limit is 30,000 feet/9,144 meters
Diver Acclimatized_at_ Altitude='no' !Acclimatization takes 2 weeks+
Starting Acclimatized Altitude=0 !Altitude for 2 weeks+ before ascent
Ascent_to Altitude Hours=1 |Average ascent rate in hours
Hours_at_Altitude_Before_ Dive=2 10ff-gassing is tracked

/

Notes:

1. Altitude of dive cannot be higher than Mount Everest!

2. If diver is not acclimatized to altitude, and makes ascent to altitude

before the dive, critical radii and gas loadings in the half-time
compartments will be adjusted accordingly.

3. Average ascent rate to altitude is based on driving in a vehicle. For

quick flights to the dive site at altitude, the average ascent rate might
be much more rapid, as in tenths of an hour.

Sample input file format from the file VPMDECO.IN:

TRIMIX DIVE TO 260 FSW IDescription of dive

3 INumber of gas mixes

.15, .45, .40 !|Fraction 02, Fraction He, Fraction N2
.36,.00, .64 |Fraction 02, Fraction He, Fraction N2
1.0,.00,.00 |Fraction 02, Fraction He, Fraction N2

1 !|Profile code 1 = descent

0,260,75,1 !Starting depth, ending depth, rate, gasmix
2 IProfile code 2 = constant depth

260,30,1 !Depth, run time at end of segment, gasmix

99 IProfile code 99 = decompress

3 INumber of ascent parameter changes
260,1,-30,10 IStarting depth, gasmix, rate, step size
110,2,-30,10 IChange depth, gasmix, rate, step size
20,3,-10,20 IChange depth, gasmix, rate, step size

1 IRepetitive code 1 = repetitive dive to follow
60 ISurface interval time in minutes

TRIMIX DIVE TO 260 FSW IDescription of dive

3 INumber of gas mixes

.15, .45, .40 |Fraction 02, Fraction He, Fraction N2
.36, .00, .64 |Fraction 02, Fraction He, Fraction N2
1.0,.00,.00 |Fraction 02, Fraction He, Fraction N2

1 IProfile code 1 = descent

0,260,75,1 IStarting depth, ending depth, rate, gasmix
2 I|Profile code 2 = constant depth

260,30,1 !Depth, run time at end of segment, gasmix

99 !|Profile code 99 = decompress

3 INumber of ascent parameter changes
260,1,-30,10 IStarting depth, gasmix, rate, step size
110,2,-30,10 IChange depth, gasmix, rate, step size
20,3,-10,20 IChange depth, gasmix, rate, step size

0 IRepetitive code 0 = last dive/end of file

Varying Permeability Model (VPM) Decompression Program in Fortran

Sample output from the file VPMDECO.OQOUT:

DECOMPRESSION CALCULATION PROGRAM
Developed in FORTRAN by Erik C. Baker

lusing default program settings

Program Run: 04-09-2001 at 09:02 pm Model: VPM 2001
Description: TRIMIX DIVE TO 260 FSW
Gasmix Summary: FO2 FHe FN2
Gasmix # 1 .150 .450 .400
Gasmix # 2 .360 .000 .640
Gasmix # 3 1.000 .000 .000
DIVE PROFILE
Seg- Segm. Run | Gasmix | Ascent From To Rate | Constant
ment Time Time | Used | or Depth Depth +Dn/-Up | Depth
(min) (min) i # i Descent (fswg) (fswg) (fsw/min) i (fswg)
1 3.5 3.5 | 1 | Descent 0. 260 75.0
2 26.5 30.0 | 1 | | 260
DECOMPRESSION PROFILE
Leading compartment enters the decompression zone at 209.7 fswg
Deepest possible decompression stop is 200.0 fswg
Seg- Segm. Run Gasmix Ascent Ascent Col DECO STOP RUN
ment Time Time Used To Rate Not STOP TIME TIME
(min) (min) # (fswg) (fsw/min) Used (fswg) (min) (min)
3 2.7 32.7 1 180 -30.0
4 .3 33.0 1 180 1 33
5 .3 33.3 1 170. -30.0
6 .7 34.0 1 170 1 34
7 .3 34.3 1 160. -30.0
8 .7 35.0 1 160 1 35
9 .3 35.3 1 150. -30.0
10 1.7 37.0 1 150 2 37
11 .3 37.3 1 140. -30.0
12 1.7 39.0 1 140 2 39
13 .3 39.3 1 130. -30.0
14 1.7 41.0 1 130 2 41
15 .3 41.3 1 120. -30.0
16 2.7 44.0 1 120 3 44
17 .3 44 .3 1 110. -30.0
18 1.7 46.0 2 110 2 46
19 .3 46.3 2 100. -30.0
20 .7 47.0 2 100 1 47
21 .3 47.3 2 90. -30.0
22 1.7 49.0 2 90 2 49
23 .3 49.3 2 80. -30.0
24 1.7 51.0 2 80 2 51
25 .3 51.3 2 70. -30.0
26 2.7 54.0 2 70 3 54
27 .3 54.3 2 60. -30.0
28 3.7 58.0 2 60 4 58
29 .3 58.3 2 50. -30.0
30 4.7 63.0 2 50 5 63
31 .3 63.3 2 40. -30.0
32 5.7 69.0 2 40 6 69
33 .3 69.3 2 30. -30.0
34 7.7 77.0 2 30 8 77
35 .3 77.3 2 20. -30.0
36 21.7 99.0 3 20 22 99
37 2.0 101.0 3 0 -10.0

Varying Permeability Model (VPM) Decompression Program in Fortran

REPETITIVE DIVE: !Surface interval = 60 min

DECOMPRESSION CALCULATION PROGRAM
Developed in FORTRAN by Erik C. Baker

Program Run: 04-09-2001 at 09:02 pm Model: VPM 2001
Description: TRIMIX DIVE TO 260 FSW
Gasmix Summary: FO2 FHe FN2

Gasmix # 1 .150 .450 .400

Gasmix # 2 .360 .000 .640

Gasmix # 3 1.000 .000 .000

DIVE PROFILE

Seg- Segm. Run | Gasmix | Ascent From To Rate | Constant
ment Time Time | Used | or Depth Depth +Dn/-Up | Depth
(min) (min) | # | Descent (fswg) (fswg) (fsw/min) | (fswg)
1 3.5 3.5 | 1 | Descent 0. 260. 75.0
2 26.5 30.0 | 1 | 260

DECOMPRESSION PROFILE

Leading compartment enters the decompression zone at 209.7 fswg
Deepest possible decompression stop is 200.0 fswg

Seg- Segm. Run Gasmix Ascent Ascent Col DECO STOP RUN
ment Time Time Used To Rate Not STOP TIME TIME
(min) (min) # (fswg) (fsw/min) Used (fswg) (min) (min)
3 2.7 32.7 1 180 -30.0
4 3 33.0 1 180 1 33
5 3 33.3 1 170 -30.0
6 7 34.0 1 170 1 34
7 .3 34.3 1 160. -30.0
8 1.7 36.0 1 160 2 36
9 3 36.3 1 150. -30.0
10 7 37.0 1 150 1 37
11 3 37.3 1 140. -30.0
12 1.7 39.0 1 140 2 39
13 3 39.3 1 130. -30.0
14 1.7 41.0 1 130 2 41
15 3 41.3 1 120. -30.0
16 2.7 44 .0 1 120 3 44
17 3 44 .3 1 110. -30.0
18 1.7 46.0 2 110 2 46
19 3 46.3 2 100. -30.0
20 7 47.0 2 100 1 47
21 3 47.3 2 90. -30.0
22 1.7 49.0 2 90 2 49
23 3 49.3 2 80. -30.0
24 2.7 52.0 2 80 3 52
25 3 52.3 2 70. -30.0
26 3.7 56.0 2 70 4 56
27 3 56.3 2 60. -30.0
28 3.7 60.0 2 60 4 60
29 3 60.3 2 50. -30.0
30 6.7 67.0 2 50 7 67
31 3 67.3 2 40. -30.0
32 8.7 76.0 2 40 9 76
33 3 76.3 2 30. -30.0
34 11.7 88.0 2 30 12 88
35 3 88.3 2 20. -30.0
36 35.7 124.0 3 20 36 124
37 2.0 126.0 3 0 -10.0

NN NOON QNN NN NQNN

Varying Permeability Model (VPM) Decompression Program in Fortran

PROGRAM VPMDECO

Varying Permeability Model (VPM) Decompression Program in FORTRAN
Author: Erik C. Baker
"DISTRIBUTE FREELY - CREDIT THE AUTHORS"

This program extends the 1986 VPM algorithm (Yount & Hoffman) to include
mixed gas, repetitive, and altitude diving. Developments to the algorithm
were made by David E. Yount, Eric B. Maiken, and Erik C. Baker over a
period from 1999 to 2001. This work is dedicated in remembrance of
Professor David E. Yount who passed away on April 27, 2000.

Notes:

1. This program uses the sixteen (16) half-time compartments of the
Buhlmann ZH-L16 model. The optional Compartment 1lb is used here with
half-times of 1.88 minutes for helium and 5.0 minutes for nitrogen.

2. This program uses various DEC, IBM, and Microsoft extensions which
may not be supported by all FORTRAN compilers. Comments are made with
a capital "C" in the first column or an exclamation point "!" placed
in a line after code. An asterisk "*" in column 6 is a continuation
of the previous line. All code, except for line numbers, starts in
column 7.

3. Comments and suggestions for improvements are welcome. Please
respond by e-mail to: EBaker@se.aeieng.com

Acknowledgment: Thanks to Kurt Spaugh for recommendations on how to clean
up the code.

CHARACTER M*1, OS Command*3, Word*7, Units*3
CHARACTER Linel*70, Critical Volume Algorithm*3
CHARACTER Units Wordl*4, Units Word2*7, Altitude Dive Algorithm*3

INTEGER I, J lloop counters
INTEGER*2 Month, Day, Year, Clock Hour, Minute

INTEGER Number of Mixes, Number of Changes, Profile Code

INTEGER Segment Number Start of Ascent, Repetitive Dive Flag

LOGICAL Schedule Converged, Critical Volume Algorithm Off
LOGICAL Altitude Dive Algorithm Off

REAL Deco_Ceiling Depth, Deco Stop Depth, Step Size
REAL Sum of Fractions, Sum Check

REAL Depth, Ending Depth, Starting Depth

REAL Rate, Rounding Operationl, Run Time End of Segment
REAL Last Run Time, Stop Time, Depth Start of Deco Zone
REAL Rounding Operation2, Deepest Possible Stop Depth
REAL First Stop Depth, Critical Volume Comparison

REAL Next Stop, Run Time Start of Deco Zone

REAL Critical Radius N2 Microns, Critical Radius He Microns
REAL Run Time Start of Ascent, Altitude of Dive

REAL Deco_Phase Volume Time, Surface Interval Time

REAL Pressure Other Gases mmHg

INTEGER Mix Change (10)

Varying Permeability Model (VPM) Decompression Program in Fortran

REAL Fraction Oxygen (10)

REAL Depth Change (10)

REAL Rate Change(10), Step Size Change (10)

REAL Helium Half Time(16), Nitrogen Half Time(16)
REAL He Pressure_ Start of Ascent (16)

REAL N2 Pressure_ Start of _Ascent (16)

REAL He Pressure_Start of _Deco_Zone (16)

REAL N2 Pressure_ Start of _Deco_Zone (16)

REAL Phase Volume Time (16)

REAL Last_ Phase Volume _Time (16)

REAL Water_ Vapor Pressure
COMMON /Block 8/ Water Vapor Pressure

REAL Surface Tension Gamma, Skin Compression GammaC
COMMON /Block 19/ Surface Tension Gamma, Skin Compression GammaC

REAL Crit_Volume Parameter Lambda
COMMON /Block_20/ Crit_Volume_ Parameter_ Lambda

REAL Minimum Deco Stop Time
COMMON /Block 21/ Minimum Deco Stop Time

REAL Regeneration Time Constant
COMMON /Block 22/ Regeneration Time Constant

REAL Constant Pressure Other Gases
COMMON /Block 17/ Constant Pressure Other_ Gases

REAL Gradient_ Onset_of Imperm Atm
COMMON /Block_14/ Gradient Onset_ of Imperm Atm

INTEGER Segment Number
REAL Run Time, Segment Time
COMMON /Block 2/ Run Time, Segment Number, Segment Time

REAL Ending Ambient Pressure
COMMON /Block 4/ Ending Ambient Pressure

INTEGER Mix_Number
COMMON /Block 9/ Mix Number

REAL Barometric_Pressure
COMMON /Block 18/ Barometric Pressure

LOGICAL Units Equal Fsw, Units Equal Msw
COMMON /Block 15/ Units Equal Fsw, Units Equal Msw

REAL Units Factor
COMMON /Block 16/ Units_ Factor

REAL Helium Time Constant (16)
COMMON /Block 1A/ Helium Time Constant

REAL Nitrogen Time Constant (16)
COMMON /Block 1B/ Nitrogen Time Constant

REAL Helium Pressure(l6), Nitrogen Pressure(16)

Varying Permeability Model (VPM) Decompression Program in Fortran
COMMON /Block_3/ Helium Pressure, Nitrogen Pressure

REAL Fraction Helium(10), Fraction Nitrogen(10)
COMMON /Block 5/ Fraction Helium, Fraction Nitrogen

REAL Initial Critical Radius He(16)

REAL Initial Critical Radlus _N2(16)

COMMON /Block 6/ Initial _Critical Radius He,
* Initial Cr1t1ca1 Radlus _ N2

REAL Adjusted Critical Radius He(16)

REAL Adjusted Critical Radlus _N2(16)

COMMON /Block 7/ Adjusted Critical Radius_He,
* Adjusted Critical Radlus _N2

REAL Max Crushing Pressure He(16), Max Crushing Pressure N2 (16)
COMMON /Block 10/ Max Crushing Pressure He,
* Max_ Crushing Pressure_ N2

REAL Surface Phase Volume Time (16)
COMMON /Block 11/ Surface Phase Volume Time

REAL Max Actual Gradient (16)
COMMON /Block 12/ Max Actual Gradient

REAL Amb Pressure Onset of Imperm(16)

REAL Gas Tension Onset of Imperm(16)

COMMON /Block 13/ Amb Pressure Onset of Imperm,
* Gas_Tens1on_Onset_of_Imperm

NAMELIST FOR PROGRAM SETTINGS (READ IN FROM ASCII TEXT FILE)

NAMELIST /Program Settings/ Units, Altitude Dive Algorithm,

* Minimum Deco Stop Time, Critical Radlus N2 Microns,

* Critical Radius He Microns, Critical Volume ~Algorithm,
* Crit Volume Parameter __Lambda,

* Gradient Onset _of Imperm Atm,

* Surface_Tens1on_Gamma, Skin Compression GammaC,

* Regeneration Time_ Constant, Pressure Other Gases_mmHg

DATA Helium Half Time /1.88/,Helium Half Time(2)/3.02/,
Helium Half Time /4.72/,Helium Half Time(4)/6.99/,
Helium Half Time /10.21/,Helium Half _Time ()/14.48/,

(1)

(3)

(5)

Helium Half Time(7)/20.53/,Helium Half Time(8)/29.11/,
(
(
(

1

3

5

7

Helium Half Time(9)/41.20/,Helium Half Time (10)/55.19/,
Helium Half Time(11)/70.69/,Helium Half _Time(12)/90.34/,
Helium Half Time(13)/115.29/,Helium Half _Time(14)/147.42/,
Helium Half Time (15) /188 24/,Helium Half Time(16)/240.03/

DATA Nitrogen Half Time(1)/5.0/,Nitrogen Half Time(2)/8.0/,

* Nitrogen Half Time (3)/12.5/,Nitrogen Half Time (4)/18.5/,

* Nitrogen Half Time (5)/27.0/,Nitrogen Half Time (6)/38.3/,

* Nitrogen Half Time(7)/54.3/,Nitrogen Half Time (8)/77.0/,

* Nitrogen Half Time (9)/109.0/,Nitrogen Half Time (10)/146.0/,

* (1

* (1

* (1

* Ok ok 3k F * %

Nitrogen Half Time)/187.0/,Nitrogen Half Time(12)/239.0/,
Nitrogen Half Time)/305.0/,Nitrogen Half Time(14)/390.0/,
Nitrogen Half Time)/498.0/,Nitrogen Half Time(16)/635.0/

Ul W R —— — — —

OPEN (UNIT = 7, FILE = 'VPMDECO.IN', STATUS = 'UNKNOWN',
* ACCESS = 'SEQUENTIAL', FORM = 'FORMATTED')
OPEN (UNIT = 8, FILE = 'VPMDECO.OUT', STATUS = 'UNKNOWN',

Varying Permeability Model (VPM) Decompression Program in Fortran

* ACCESS = 'SEQUENTIAL', FORM = 'FORMATTED')
OPEN (UNIT = 10, FILE = 'VPMDECO.SET', STATUS = 'UNKNOWN',
* ACCESS = 'SEQUENTIAL', FORM = 'FORMATTED')

OS Command = 'CLS'

CALL SYSTEMQQ (OS_Command) !Pass "clear screen" command
PRINT *,' ! lto MS operating system
PRINT *, 'PROGRAM VPMDECO'

PRINT *,' ! lasterisk indicates print to screen

READ IN PROGRAM SETTINGS AND CHECK FOR ERRORS
IF THERE ARE ERRORS, WRITE AN ERROR MESSAGE AND TERMINATE PROGRAM

READ (10,Program Settings)

IF ((Units .EQ. 'fsw').OR. (Units .EQ. 'FSW')) THEN
Units_Equal_Fsw = (.TRUE.)
Units Equal Msw = (.FALSE.)

ELSE IF ((Units .EQ. 'msw').OR. (Units .EQ. 'MSW')) THEN
Units Equal Fsw = (.FALSE.)
Units Equal Msw = (.TRUE.)

ELSE

CALL SYSTEMQQ (OS_Command)
WRITE (*,901)
WRITE (*,900)
STOP 'PROGRAM TERMINATED'

END IF

IF ((Altitude Dive Algorithm .EQ. 'ON') .OR.

* (Altitude Dive Algorithm .EQ. 'on')) THEN
Altitude Dive Algorithm Off = (.FALSE.)

ELSE IF ((Altitude Dive Algorithm .EQ. 'OFF') .OR.

* (Altitude Dive Algorithm .EQ. 'off')) THEN
Altitude Dive Algorithm Off = (.TRUE.)

ELSE

WRITE (*,902)

WRITE (*,900)

STOP 'PROGRAM TERMINATED'
END IF

IF ((Critical Radius N2 Microns .LT. 0.2) .OR.
* (Critical Radius N2 Microns .GT. 1.35)) THEN
CALL SYSTEMQQ (OS_Command)
WRITE (*,903)
WRITE (*,900)
STOP 'PROGRAM TERMINATED'
END IF

[

IF ((Critical Radius He Microns .LT. 0.2) .OR.
* (Critical Radius He Microns .GT. 1.35)) THEN
CALL SYSTEMQQ (OS_Command)
WRITE (*,903)
WRITE (*,900)
STOP 'PROGRAM TERMINATED'
END IF

[

IF ((Critical Volume Algorithm .EQ. 'ON') .OR.

* (Critical Volume Algorithm .EQ. 'on')) THEN
Critical Volume Algorithm Off = (.FALSE.)

ELSE IF ((Critical Volume Algorithm .EQ. 'OFF') .OR.

* (Critical Volume Algorithm .EQ. 'off')) THEN
Critical Volume Algorithm Off = (.TRUE.)

Varying Permeability Model (VPM) Decompression Program in Fortran

ELSE

WRITE (*,904)

WRITE (*,900)

STOP 'PROGRAM TERMINATED'
END IF

INITIALIZE CONSTANTS/VARIABLES BASED ON SELECTION OF UNITS - FSW OR MSW
fsw = feet of seawater, a unit of pressure
msw = meters of seawater, a unit of pressure

IF (Units_Equal_Fsw) THEN
WRITE (*,800)

Units_Wordl = 'fswg'
Units Word2 = 'fsw/min'
Units_Factor = 33.0
Water Vapor Pressure = 1.607 Ibased on respiratory quotient of 0.8
! (Schreiner value)
END IF

IF (Units Equal Msw) THEN
WRITE (*,801)

Units Wordl = 'mswg'

Units Word2 = 'msw/min'

Units Factor = 10.1325

Water Vapor Pressure = 0.493 !based on respiratory quotient of 0.8
END IF ! (8chreiner value)

Constant Pressure Other Gases = (Pressure Other Gases mmHg/760.0)
* * Units Factor

Run Time = 0.0

Segment Number = 0

DO I = 1,16

Helium Time Constant (I) = ALOG(2.0)/Helium Half Time (I)

Nitrogen Time Constant (I) = ALOG(2.0)/Nitrogen Half Time (I)

Max Crushing Pressure He(I) = 0.0

Max Crushing Pressure N2(I) = 0.0

Max Actual Gradient(I) = 0.0

Surface Phase Volume Time(I) = 0.0

Amb Pressure Onset of Imperm(I) = 0.0

Gas Tension Onset of Imperm(I) = 0.0

Initial Critical Radius N2(I) = Critical Radius N2 Microns
* * 1.0E-6

Initial Critical Radius He(I) = Critical Radius He Microns
* * 1.0E-6
END DO

INITIALIZE VARIABLES FOR SEA LEVEL OR ALTITUDE DIVE

See subroutines for explanation of altitude calculations. Purposes are
1) to determine barometric pressure and 2) set or adjust the VPM critical
radius variables and gas loadings, as applicable, based on altitude,
ascent to altitude before the dive, and time at altitude before the dive

IF (Altitude Dive Algorithm Off) THEN
Altitude of Dive = 0.0
CALL CALC BAROMETRIC PRESSURE (Altitude of Dive) Isubroutine
WRITE (*,802) Altitude of Dive, Barometric Pressure
DO I = 1,16
Adjusted Critical Radius N2 (I)

Initial Critical Radius N2 (I)

Adjusted Critical Radius He(I) = Initial Critical Radius He(I)
Helium Pressure(I) = 0.0
Nitrogen Pressure(I) = (Barometric Pressure -

* Water Vapor Pressure)*0.79

10

nNOoONOONOQNQO

Varying Permeability Model (VPM) Decompression Program in Fortran

END DO
ELSE

CALL VPM_ALTITUDE DIVE ALGORITHM I'subroutine
END IF

START OF REPETITIVE DIVE LOOP

This is the largest loop in the main program and operates between Lines
30 and 330. If there is one or more repetitive dives, the program will
return to this point to process each repetitive dive.

0 DO 330, WHILE (.TRUE.) !loop will run continuously until
lthere is an exit statement

INPUT DIVE DESCRIPTION AND GAS MIX DATA FROM ASCII TEXT INPUT FILE
BEGIN WRITING HEADINGS/OUTPUT TO ASCII TEXT OUTPUT FILE
See separate explanation of format for input file.

READ (7,805) Linel

CALL CLOCK (Year, Month, Day, Clock Hour, Minute, M) Isubroutine
WRITE (8,810)

WRITE (8,811)

WRITE (8,812)

WRITE (8,813)

WRITE (8,813)

WRITE (8,814) Month, Day, Year, Clock Hour, Minute, M

WRITE (8,813)

WRITE (8,815) Linel

WRITE (8,813)

READ (7,*) Number of Mixes Icheck for errors in gasmixes

DO I = 1, Number of Mixes
READ (7,*) Fraction Oxygen(I), Fraction Helium(I),

* Fraction Nitrogen(I)
Sum _of Fractions = Fraction Oxygen(I) + Fraction Helium(I) +
* Fraction Nitrogen(I)

Sum_Check = Sum of Fractions
IF (Sum Check .NE. 1.0) THEN
CALL SYSTEMQQ (OS_Command)
WRITE (*,906)
WRITE (*,900)
STOP 'PROGRAM TERMINATED'
END IF
END DO
WRITE (8,820)
DO J = 1, Number of Mixes
WRITE (8,821) J, Fraction Oxygen(J), Fraction Helium(J),

* Fraction Nitrogen (J)

END DO

WRITE (8,813)

WRITE (8,813)

WRITE (8,830)

WRITE (8,813)

WRITE (8,831)

WRITE (8,832)

WRITE (8,833) Units Wordl, Units Wordl, Units Word2, Units Wordl
()

DIVE PROFILE LOOP - INPUT DIVE PROFILE DATA FROM ASCII TEXT INPUT FILE
AND PROCESS DIVE AS A SERIES OF ASCENT/DESCENT AND CONSTANT DEPTH
SEGMENTS. THIS ALLOWS FOR MULTI-LEVEL DIVES AND UNUSUAL PROFILES. UPDATE
GAS LOADINGS FOR EACH SEGMENT. IF IT IS A DESCENT SEGMENT, CALC CRUSHING
PRESSURE ON CRITICAL RADII IN EACH COMPARTMENT.

"Instantaneous" descents are not used in the VPM. All ascent/descent
segments must have a realistic rate of ascent/descent. Unlike Haldanian
models, the VPM is actually more conservative when the descent rate is

11

[eNONeEON®!

[eNONeEONP!

NN NQO

Varying Permeability Model (VPM) Decompression Program in Fortran

slower becuase the effective crushing pressure is reduced. Also, a
realistic actual supersaturation gradient must be calculated during
ascents as this affects critical radii adjustments for repetitive dives.
Profile codes: 1 = Ascent/Descent, 2 = Constant Depth, 99 = Decompress

DO WHILE (.TRUE.) !loop will run continuously until
lthere is an exit statement
READ (7,*) Profile Code
IF (Profile Code .EQ. 1) THEN
READ (7,*) Starting Depth, Ending Depth, Rate, Mix Number
CALL GAS_LOADINGS_ASCENT DESCENT (Starting_ Depth, Isubroutine
* Ending Depth, Rate)
IF (Ending Depth .GT. Starting Depth) THEN
CALL CALC CRUSHING PRESSURE (Starting Depth, Isubroutine
* Ending Depth, Rate)
END IF
IF (Ending Depth .GT. Starting Depth) THEN
Word = 'Descent'
ELSE IF (Starting Depth .GT. Ending Depth) THEN
Word = 'Ascent '
ELSE
Word = 'ERROR'
END IF
WRITE (8,840) Segment Number, Segment Time, Run Time,
* Mix Number, Word, Starting Depth, Ending Depth,
* Rate
ELSE IF (Profile Code .EQ. 2) THEN
READ (7,*) Depth, Run Time End of Segment, Mix Number

CALL GAS LOADINGS CONSTANT DEPTH (Depth, I'subroutine
* Run Time End of Segment)
WRITE (8,845) Segment Number, Segment Time, Run Time,
* Mix Number, Depth
ELSE IF (Profile Code .EQ. 99) THEN
EXIT
ELSE

CALL SYSTEMQQ (OS_Command)
WRITE (*,907)
WRITE (*,900)
STOP 'PROGRAM TERMINATED'

BEGIN PROCESS OF ASCENT AND DECOMPRESSION

First, calculate the regeneration of critical radii that takes place over
the dive time. The regeneration time constant has a time scale of weeks
so this will have very little impact on dives of normal length, but will
have major impact for saturation dives.

CALCULATE INITIAL ALLOWABLE GRADIENTS FOR ASCENT
This is based on the maximum effective crushing pressure on critical radii
in each compartment achieved during the dive profile.

SAVE VARIABLES AT START OF ASCENT (END OF BOTTOM TIME) SINCE THESE WILL
BE USED LATER TO COMPUTE THE FINAL ASCENT PROFILE THAT IS WRITTEN TO THE
OUTPUT FILE.

The VPM uses an iterative process to compute decompression schedules so
there will be more than one pass through the decompression loop.

NN NOONOONOQn

Varying Permeability Model (VPM) Decompression Program in Fortran

DO I =1,16
He Pressure Start of Ascent (I) = Helium Pressure (I)
N2 Pressure Start of Ascent (I) Nitrogen Pressure (I)
END DO
Run_Time Start_of Ascent = Run_Time
Segment Number Start of Ascent = Segment Number

INPUT PARAMETERS TO BE USED FOR STAGED DECOMPRESSTION AND SAVE IN ARRAYS.
ASSIGN INITAL PARAMETERS TO BE USED AT START OF ASCENT

The user has the ability to change mix, ascent rate, and step size in any
combination at any depth during the ascent.

READ (7,*) Number_of Changes
DO I = 1, Number of Changes
READ (7,*) Depth Change(I), Mix Change(I), Rate Change(I),
* Step Size Change (I)
END DO
Starting Depth = Depth Change (1)
Mix Number = Mix Change (1)
Rate = Rate_Change (1)
Step Size = Step Size Change(1)

CALCULATE THE DEPTH WHERE THE DECOMPRESSION ZONE BEGINS FOR THIS PROFILE
BASED ON THE INITIAL ASCENT PARAMETERS AND WRITE THE DEEPEST POSSIBLE
DECOMPRESSION STOP DEPTH TO THE OUTPUT FILE

Knowing where the decompression zone starts is very important. Below
that depth there is no possibility for bubble formation because there
will be no supersaturation gradients. Deco stops should never start
below the deco zone. The deepest possible stop deco stop depth is
defined as the next "standard" stop depth above the point where the
leading compartment enters the deco zone. Thus, the program will not
base this calculation on step sizes larger than 10 fsw or 3 msw. The
deepest possible stop depth is not used in the program, per se, rather
it is information to tell the diver where to start putting on the brakes
during ascent. This should be prominently displayed by any deco program.

CALL CALC START OF DECO ZONE (Starting Depth, Rate, !subroutine
* Depth Start of Deco Zone)
IF (Units Equal Fsw) THEN
IF (Step Size .LT. 10.0) THEN
Rounding Operationl =

b (Depth Start of Deco Zone/Step Size) - 0.5
Deepest Possible Stop Depth = ANINT (Rounding Operationl)
* * Step Size
ELSE
Rounding Operationl = (Depth Start of Deco Zone/10.0)
* - 0.5
Deepest Possible Stop Depth = ANINT (Rounding Operationl)
* * 10.0
END IF
END IF

IF (Units Equal Msw) THEN
IF (Step Size .LT. 3.0) THEN
Rounding Operationl =

* (Depth Start of Deco Zone/Step Size) - 0.5
Deepest Possible Stop Depth = ANINT (Rounding Operationl)
* * Step Size
ELSE
Rounding Operationl = (Depth Start of Deco Zone/3.0)
* - 0.5
Deepest Possible Stop Depth = ANINT (Rounding Operationl)
* * 3.0
END IF
END IF

13

ugnNnnoNnNOOnNONNONQNN

Varying Permeability Model (VPM) Decompression Program in Fortran

WRITE (8,813)

WRITE (8,813)

WRITE (8,850)

WRITE (8,813)

WRITE (8,857) Depth Start of Deco Zone, Units Wordl
WRITE (8,858) Deepest Possible Stop Depth, Units Wordl
WRITE (8,813)

WRITE (8,851)

WRITE (8,852)

WRITE (8,853) Units Wordl, Units Word2, Units Wordl
WRITE (8,854)

TEMPORARILY ASCEND PROFILE TO THE START OF THE DECOMPRESSION ZONE, SAVE
VARIABLES AT THIS POINT, AND INITIALIZE VARIABLES FOR CRITICAL VOLUME LOOP
The iterative process of the VPM Critical Volume Algorithm will operate
only in the decompression zone since it deals with excess gas volume
released as a result of supersaturation gradients (not possible below the
decompression zone) .

CALL GAS_LOADINGS ASCENT DESCENT (Starting Depth, !subroutine
* Depth Start of Deco Zone, Rate)
Run Time Start of Deco Zone = Run Time
Deco Phase Volume Time = 0.0
Last Run Time = 0.0
Schedule Converged = (.FALSE.)
DO I = 1,16
Last Phase Volume Time(I) = 0.0

He Pressure Start of Deco Zone

N2 Pressure Start of Deco Zone

Max Actual Gradient(I) = 0.0
END DO

START OF CRITICAL VOLUME LOOP

This loop operates between Lines 50 and 100. If the Critical Volume
Algorithm is toggled "off" in the program settings, there will only be
one pass through this loop. Otherwise, there will be two or more passes
through this loop until the deco schedule is "converged" - that is when a
comparison between the phase volume time of the present iteration and the
last iteration is less than or equal to one minute. This implies that
the volume of released gas in the most recent iteration differs from the
"critical" volume limit by an acceptably small amount. The critical
volume limit is set by the Critical Volume Parameter Lambda in the program
settings (default setting is 7500 fsw-min with adjustability range from
from 6500 to 8300 fsw-min according to Bruce Wienke) .

) = Helium Pressure(I)
) = Nitrogen Pressure (I)

H

0 DO 100, WHILE (.TRUE.) lloop will run continuously until
lthere is an exit statement

CALCULATE CURRENT DECO CEILING BASED ON ALLOWABLE SUPERSATURATION
GRADIENTS AND SET FIRST DECO STOP. CHECK TO MAKE SURE THAT SELECTED STEP
SIZE WILL NOT ROUND UP FIRST STOP TO A DEPTH THAT IS BELOW THE DECO ZONE.

CALL CALC DECO CEILING (Deco Ceiling Depth) !subroutine
IF (Deco Ceiling Depth .LE. 0.0) THEN
Deco_Stop Depth = 0.0

ELSE
Rounding Operation2 = (Deco Ceiling Depth/Step Size) + 0.5
Deco Stop Depth = ANINT (Rounding Operation2) * Step Size
END IF

IF (Deco_Stop Depth .GT. Depth Start of Deco Zone) THEN
WRITE (*,905)
WRITE (*,900)
STOP 'PROGRAM TERMINATED'

14

Varying Permeability Model (VPM) Decompression Program in Fortran

Q===========—============—==

c PERFORM A SEPARATE "PROJECTED ASCENT" OUTSIDE OF THE MAIN PROGRAM TO MAKE

c SURE THAT AN INCREASE IN GAS LOADINGS DURING ASCENT TO THE FIRST STOP WILL

cC NOT CAUSE A VIOLATION OF THE DECO CEILING. IF SO, ADJUST THE FIRST STOP

cC DEEPER BASED ON STEP SIZE UNTIL A SAFE ASCENT CAN BE MADE.

c Note: this situation is a possibility when ascending from extremely deep

C dives or due to an unusual gas mix selection.

c CHECK AGAIN TO MAKE SURE THAT ADJUSTED FIRST STOP WILL NOT BE BELOW THE

c DECO ZONE.

C===
CALL PROJECTED ASCENT (Depth Start of Deco Zone, Rate, !subroutine
* Deco_Stop Depth, Step Size)

IF (Deco_Stop Depth .GT. Depth Start of Deco Zone) THEN
WRITE (*,905)
WRITE (*,900)
STOP 'PROGRAM TERMINATED'

END IF

c

c HANDLE THE SPECIAL CASE WHEN NO DECO STOPS ARE REQUIRED - ASCENT CAN BE
C MADE DIRECTLY TO THE SURFACE

c Write ascent data to output file and exit the Critical Volume Loop.

c

IF (Deco_Stop Depth .EQ. 0.0) THEN
DO I =1,16

Helium Pressure(I) = He Pressure Start of Ascent (I)
Nitrogen Pressure(I) = N2 Pressure Start of Ascent (I)
END DO

Run Time = Run Time Start of Ascent

Segment Number = Segment Number Start of Ascent

Starting Depth = Depth Change (1)

Ending Depth = 0.0

CALL GAS_LOADINGS ASCENT DESCENT (Starting Depth, !subroutine
* Ending Depth, Rate)

WRITE (8,860) Segment Number, Segment Time, Run Time,
* Mix Number, Deco Stop Depth, Rate

EXIT lexit the critical volume loop at Line 100

c ASSIGN VARIABLES FOR ASCENT FROM START OF DECO ZONE TO FIRST STOP. SAVE
c FIRST STOP DEPTH FOR LATER USE WHEN COMPUTING THE FINAL ASCENT PROFILE

Starting Depth = Depth Start of Deco Zone
First Stop Depth = Deco Stop Depth

DECO STOP LOOP BLOCK WITHIN CRITICAL VOLUME LOOP

This loop computes a decompression schedule to the surface during each
iteration of the critical volume loop. No output is written from this
loop, rather it computes a schedule from which the in-water portion of the
total phase volume time (Deco Phase Volume Time) can be extracted. Also,
the gas loadings computed at the end of this loop are used the subroutine
which computes the out-of-water portion of the total phase volume time
(Surface Phase Volume Time) for that schedule.

Note that exit is made from the loop after last ascent is made to a deco
stop depth that is less than or equal to zero. A final deco stop less
than zero can happen when the user makes an odd step size change during
ascent - such as specifying a 5 msw step size change at the 3 msw stop!

NN NOONONOQn

DO WHILE (.TRUE.) !loop will run continuously until
lthere is an exit statement

15

(&)
o

NN NOONONOQn

NN nNOONNMONQON

Varying Permeability Model (VPM) Decompression Program in Fortran

CALL GAS_LOADINGS_ ASCENT DESCENT (Starting Depth, Isubroutine
Deco_Stop_ Depth, Rate)

IF (Deco_Stop_Depth .LE. 0.0) EXIT lexit at Line 60
IF (Number of Changes .GT. 1) THEN
DO I = 2, Number of Changes
IF (Depth Change(I) .GE. Deco_Stop Depth) THEN
Mix Number = Mix_ Change (I)
Rate = Rate_Change (I)
Step Size = Step Size Change(I)
END IF
END DO
END IF

CALL DECOMPRESSION STOP (Deco Stop Depth, Step Size) !subroutine
Starting Depth = Deco Stop Depth
Next Stop = Deco_Stop Depth - Step Size
Deco_Stop Depth = Next Stop
Last_Run Time = Run_Time
END DO lend of deco stop loop block

COMPUTE TOTAL PHASE VOLUME TIME AND MAKE CRITICAL VOLUME COMPARISON

The deco phase volume time is computed from the run time. The surface
phase volume time is computed in a subroutine based on the surfacing gas
loadings from previous deco loop block. Next the total phase volume time
(in-water + surface) for each compartment is compared against the previous
total phase volume time. The schedule is converged when the difference is
less than or equal to 1 minute in any one of the 16 compartments.

Note: the "phase volume time" is somewhat of a mathematical concept.

It is the time divided out of a total integration of supersaturation
gradient x time (in-water and surface). This integration is multiplied
by the excess bubble number to represent the amount of free-gas released
as a result of allowing a certain number of excess bubbles to form.

Deco Phase Volume Time = Run Time - Run Time Start of Deco Zone
CALL CALC_ SURFACE PHASE VOLUME TIME Isubroutine

DO I = 1,16
Phase Volume Time(I) = Deco Phase Volume Time +
Surface Phase Volume Time (I)
Critical Volume Comparison = ABS(Phase Volume Time (I) -
Last Phase Volume Time(I))
IF (Critical Volume Comparison .LE. 1.0) THEN
Schedule Converged = (.TRUE.)
END IF

CRITICAL VOLUME DECISION TREE BETWEEN LINES 70 AND 99

There are two options here. If the Critical Volume Agorithm setting is
"on" and the schedule is converged, or the Critical Volume Algorithm
setting was "off" in the first place, the program will re-assign variables
to their values at the start of ascent (end of bottom time) and process

a complete decompression schedule once again using all the same ascent
parameters and first stop depth. This decompression schedule will match
the last iteration of the Critical Volume Loop and the program will write
the final deco schedule to the output file.

Note: if the Critical Volume Agorithm setting was "off", the final deco
schedule will be based on "Initial Allowable Supersaturation Gradients."
If it was "on", the final schedule will be based on "Adjusted Allowable
Supersaturation Gradients" (gradients that are "relaxed" as a result of
the Critical Volume Algorithm) .

16

Varying Permeability Model (VPM) Decompression Program in Fortran

C
c If the Critical Volume Agorithm setting is "on" and the schedule is not
C converged, the program will re-assign variables to their values at the
C start of the deco zone and process another trial decompression schedule.
C===
70 IF ((Schedule Converged) .OR.
* (Critical Volume Algorithm Off)) THEN
DO I = 1,16
Helium Pressure(I) = He Pressure Start of Ascent (I)
Nitrogen Pressure(I) = N2 Pressure Start of Ascent (I)
END DO
Run Time = Run Time Start of Ascent
Segment Number = Segment Number Start of Ascent
Starting Depth = Depth Change (1)
Mix Number = Mix_ Change (1)
Rate = Rate_Change (1)
Step Size = Step Size Change (1)
Deco Stop Depth = First Stop Depth
Last Run Time = 0.0
C===
cC DECO STOP LOOP BLOCK FOR FINAL DECOMPRESSION SCHEDULE
C===
DO WHILE (.TRUE.) !loop will run continuously until
lthere is an exit statement
CALL GAS_LOADINGS ASCENT DESCENT (Starting Depth, !subroutine
* Deco Stop Depth, Rate)
C===
c DURING FINAL DECOMPRESSION SCHEDULE PROCESS, COMPUTE MAXIMUM ACTUAL
c SUPERSATURATION GRADIENT RESULTING IN EACH COMPARTMENT
C If there is a repetitive dive, this will be used later in the VPM
C Repetitive Algorithm to adjust the values for critical radii.
C===
CALL CALC_MAX ACTUAL GRADIENT (Deco_ Stop_ Depth) !subroutine
WRITE (8,860) Segment Number, Segment Time, Run Time,
* Mix Number, Deco Stop Depth, Rate
IF (Deco_Stop Depth .LE. 0.0) EXIT lexit at Line 80
IF (Number of Changes .GT. 1) THEN
DO I = 2, Number of Changes
IF (Depth Change(I) .GE. Deco_Stop Depth) THEN
Mix Number = Mix Change (I)
Rate = Rate_Change (I)
Step Size = Step Size Change(I)
END IF
END DO
END IF
CALL DECOMPRESSION STOP (Deco Stop Depth, Step Size) !subroutine
C===
C This next bit justs rounds up the stop time at the first stop to be in
C whole increments of the minimum stop time (to make for a nice deco table).
C===
IF (Last Run Time .EQ. 0.0) THEN
Stop Time =
* ANINT ((Segment Time/Minimum Deco Stop Time) + 0.5) *
* Minimum Deco_ Stop Time
ELSE
Stop Time = Run Time - Last Run Time
END IF
C===
c DURING FINAL DECOMPRESSION SCHEDULE, IF MINIMUM STOP TIME PARAMETER IS A
c WHOLE NUMBER (i.e. 1 minute) THEN WRITE DECO SCHEDULE USING INTEGER
c NUMBERS (looks nicer). OTHERWISE, USE DECIMAL NUMBERS.
c Note: per the request of a noted exploration diver(!), program now allows

17

Varying Permeability Model (VPM) Decompression Program in Fortran

a minimum stop time of less than one minute so that total ascent time can
be minimized on very long dives. In fact, with step size set at 1 fsw or
0.2 msw and minimum stop time set at 0.1 minute (6 seconds), a near
continuous decompression schedule can be computed.

NN

IF (AINT (Minimum Deco_Stop_Time) .EQ.
* Minimum Deco_Stop_Time) THEN
WRITE (8,862) Segment Number, Segment Time, Run Time,
Mix Number, INT (Deco Stop Depth),
INT (Stop_Time), INT(Run_Time)
ELSE
WRITE (8,863) Segment Number, Segment Time, Run Time,
Mix Number, Deco_ Stop Depth, Stop Time,
Run_Time
END IF
Starting Depth = Deco Stop Depth
Next Stop = Deco_ Stop Depth - Step Size
Deco_Stop Depth = Next Stop
Last Run Time = Run Time
80 END DO lend of deco stop loop block
lfor final deco schedule

EXIT lexit critical volume loop at Line 100

Ifinal deco schedule written

C
c IF SCHEDULE NOT CONVERGED, COMPUTE RELAXED ALLOWABLE SUPERSATURATION
c GRADIENTS WITH VPM CRITICAL VOLUME ALGORITHM AND PROCESS ANOTHER

c ITERATION OF THE CRITICAL VOLUME LOOP

C

CALL CRITICAL VOLUME (Deco_ Phase Volume Time) !subroutine
Deco Phase Volume Time = 0.0

Run Time = Run Time Start of Deco Zone

Starting Depth = Depth Start of Deco Zone

Mix Number = Mix Change (1)

Rate = Rate_Change (1)

Step Size = Step Size Change(1)

DO I = 1,16

Last Phase Volume Time(I) = Phase Volume Time (I)
Helium Pressure(I) = He Pressure Start of Deco Zone (I)
Nitrogen Pressure(I) = N2 Pressure Start of Deco Zone (I)
END DO
CYCLE IReturn to start of critical volume loop

! (Line 50) to process another iteration

99 END IF lend of critical volume decision tree
100 CONTINUE lend of critical volume loop
C=======——=—=———=—=—=—=—=—=—=—=—=—=—=—=—====—==—=========
C PROCESSING OF DIVE COMPLETE. READ INPUT FILE TO DETERMINE IF THERE IS A

C REPETITIVE DIVE. IF NONE, THEN EXIT REPETITIVE LOOP.
C=======——=—=—=—=—=—=—=—=—=—=—=—=—=—=—===—==—==—========

READ (7,*) Repetitive Dive Flag
IF (Repetitive Dive Flag .EQ. 0) THEN
EXIT lexit repetitive dive loop
lat Line 330

IF THERE IS A REPETITIVE DIVE, COMPUTE GAS LOADINGS (OFF-GASSING) DURING
SURFACE INTERVAL TIME. ADJUST CRITICAL RADII USING VPM REPETITIVE
ALGORITHM. RE-INITIALIZE SELECTED VARIABLES AND RETURN TO START OF
REPETITIVE LOOP AT LINE 30.

NN

805
810
811
812
814

815
813
820
821
830
831

832

833

Varying Permeability Model (VPM) Decompression Program in Fortran

ELSE IF (Repetitive Dive Flag .EQ. 1) THEN
READ (7,*) Surface_Interval Time

CALL GAS_LOADINGS_ SURFACE INTERVAL (Surface_Interval Time) !subroutine

CALL VPM REPETITIVE ALGORITHM (Surface Interval Time)

DO I = 1,16

Max_ Crushing Pressure He(I) = 0.0
Max_ Crushing Pressure N2 (I) = 0.0
Max Actual Gradient (I) = 0.0

END DO

Run _Time = 0.0
Segment Number = 0
WRITE (8,880)
WRITE (8,890)
WRITE (8,813)

I'subroutine

IReturn to start of repetitive loop to process another dive

WRITE ERROR MESSAGE AND TERMINATE PROGRAM IF THERE IS AN ERROR IN THE

INPUT FILE FOR THE REPETITIVE DIVE FLAG

CALL SYSTEMQQ (OS_Command)
WRITE (*,908)
WRITE (*,900)
STOP 'PROGRAM TERMINATED'
END IF
CONTINUE

WRITE (*,813)
WRITE (*,871)
WRITE (*,872)
WRITE (*,813)
WRITE (8,880)
CLOSE (UNIT = 7, STATUS = 'KEEP')
CLOSE (UNIT = 8, STATUS = 'KEEP')
CLOSE (UNIT = 10, STATUS = 'KEEP')

FORMAT ('OUNITS = FEET OF SEAWATER (FSW) ')
= METERS OF SEAWATER (MSW) ')

IEnd of repetitive loop

FORMAT ('OALTITUDE = ',1X,F7.1,4X, 'BAROMETRIC PRESSURE = ',
*F6.3)

FORMAT (A70)

FORMAT ('+E<&alOL-&180F+-&18D+ (s0pl6.67h8.5")

(
(
FORMAT (26X, 'DECOMPRESSION CALCULATION PROGRAM')
(
(

FORMAT (24X, 'Developed in FORTRAN by Erik C. Baker')

FORMAT ('Program Run:',4X,I12.2,'-',I1I2.2,'-',I4,1X,'at"',1X,I2.2,
* ':',I2.2,1X,A1l, 'm"',23X, 'Model: VPM 2001')

FORMAT ('Description:',4X,A70)

FORMAT (' ')

36X, 'DIVE PROFILE')
FORMAT ('Seg-',2X,'Segm.',2X,'Run',3X,"]|

26X, 'Gasmix #',I2,2X,F5.3,2X,F5.3,2X,F5.3)

(
(
FORMAT ('Gasmix Summary:',24X,'FO2',64X,'FHe',4X, 'FN2')
(
(

',1X,'Gasmix',lX,'|',lX,

* 'Ascent',4X, 'From',5X, 'To',6X, 'Rate',4X,'|', 1X, 'Constant')
FORMAT ('ment',2X,'Time',3X,'Time',2X,'|',2X,'Used',2X,"'|",3X,
* 'or',5X, 'Depth', 3X, 'Depth',4X, '+Dn/-Up',2X,'|',2X, 'Depth')
FORMAT (2X,'#',3X,'(min)',2X,' (min)"',1X,"'|",4X, "#',3X,"'|"', 1X,

19

Varying Permeability Model (VPM) Decompression Program in Fortran

'Descent!',2X,'(',A4,"')"',2X,"'(",A4,")",2X,"'('",A7,") ", 1X,
* |||,2X,|(|,A4,|)l)

834 FORMAT ('----- 'LI1X, - - - ',2X, T --- - ',lX,'|',lX,' —————— ',lX,'|',
1X,'------- ',2X, M- - - - ',2X, M- m - L 2X, e ', 1X,
'|',1X,' ________)

840 FORMAT (I3,3X,F5.1,1X,F6.1,1X,'|',3X,I2,3X,'|',lX,A7,F7.0,

* 1X,F7.0,3X,F7.1,3X,"'|")

845 FORMAT (I3,3X,F5.1,1X,F6.1,1X,'|',3X,I2,3X,"'|"',36X,"'|"',F7.0)

850 FORMAT (31X, 'DECOMPRESSION PROFILE')

851 FORMAT ('Seg—',2X,'Segm.',2X,'Run',3X,'|',lX,'Gasmix',lX,'|',lX,
'Ascent', 3X, 'Ascent',3X, 'Col',3X,'|"',2X, 'DECO',3X, 'STOP',
3X, 'RUN"')

852 FORMAT ('ment',2X,'Time',BX,'Time',ZX,'|',2X,'Used',2X,'|',3X,
'To',6X,'Rate',4X,'Not',3X,'|',2X,'STOP',BX,'TIME',3X,

'"TIME')
853 FORMAT (2X,'#',3X,'(min)',2X,'(min)',lX,'|',4X,'#',3X,'|',1X,
* '(',A4,')',1X,'(',A7,')',2X,'Used',2X,'|',1X,'(',A4,')',
* 2X, ' (min) ',2X, ' (min) ")

854 FORMAT ('----- 'LI1X, - - ', 2X, - - - ',lX,'|',lX,' —————— ',lX,'|',
* 1X, '------ I G et ',1X, t------ vL1X, |, 1X,
* L, '12XI' _____ I,2X,I _____ I)

857 FORMAT (10X, 'Leading compartment enters the decompression zone',
* 1X,'at',F7.1,1X,A4)

858 FORMAT (17X, 'Deepest possible decompression stop is',F7.1,1X,A4)

860 FORMAT (IB,3X,F5.1,1X,F6.1,1X,'|',3X,I2,3X,'|',2X,F4.0,3X,F6.l,
* 10X, '|")

862 FORMAT (I3,3X,F5.1,1X,F6.1,1X,'|',3X,I2,3X,'|"',25%X,"']|"',2X,14,3X,
* I4,2X,1I5)

863 FORMAT (I3,3X,F5.1,1X,F6.1,1X,'|"',3X,I2,3X,'|',25X,"'|"',2X,F5.0,1X,
* F6.1,1X,F7.1)

871 FORMAT (' PROGRAM CALCULATIONS COMPLETE')

872 FORMAT ('OOutput data is located in the file VPMDECO.OUT')
880 FORMAT (' ")
(

(v

('OERROR! UNITS MUST BE FSW OR MSW')

('OERROR! ALTITUDE DIVE ALGORITHM MUST BE ON OR OFF')
('OERROR! RADIUS MUST BE BETWEEN 0.2 AND 1.35 MICRONS')
('OERROR! CRITICAL VOLUME ALGORITHM MUST BE ON OR OFF')
('OERROR! STEP SIZE IS TOO LARGE TO DECOMPRESS')
('OERROR IN INPUT FILE (GASMIX DATA) ')

('OERROR IN INPUT FILE (PROFILE CODE) ')

('OERROR IN INPUT FILE (REPETITIVE DIVE CODE) ')

C===

cC END OF MAIN PROGRAM

C===
END

C===

cC NOTE ABOUT PRESSURE UNITS USED IN CALCULATIONS:

C It is the convention in decompression calculations to compute all gas

c loadings, absolute pressures, partial pressures, etc., in the units of

C depth pressure that you are diving - either feet of seawater (fsw) or

C meters of seawater (msw). This program follows that convention with the

C the exception that all VPM calculations are performed in SI units (by

c necessity). Accordingly, there are several conversions back and forth

C between the diving pressure units and the SI units.

C===

20

NN

[eNONOEONP!

NN

Varying Permeability Model (VPM) Decompression Program in Fortran

FUNCTION SUBPROGRAM FOR GAS LOADING CALCULATIONS - ASCENT AND DESCENT

FUNCTION SCHREINER EQUATION (Initial Inspired Gas Pressure,
*Rate_Change_ Insp_Gas_Pressure, Interval_Time, Gas_Time Constant,
*Initial_ Gas_Pressure)

ARGUMENTS

REAL Initial_ Inspired_Gas_Pressure linput
REAL Rate_Change_ Insp Gas_Pressure linput
REAL Interval Time, Gas_Time_ Constant linput
REAL Initial_Gas_Pressure linput
REAL SCHREINER_EQUATION loutput

Note: The Schreiner equation is applied when calculating the uptake or
elimination of compartment gases during linear ascents or descents at a
constant rate. For ascents, a negative number for rate must be used.

SCHREINER EQUATION =

Initial Inspired Gas Pressure + Rate Change Insp Gas Pressure
* (Interval Time - 1.0/Gas_Time Constant) -

* (Initial Inspired Gas Pressure - Initial Gas Pressure -

Rate Change Insp Gas Pressure/Gas Time Constant)

*EXP (-Gas Time Constant*Interval Time)

RETURN

END

FUNCTION HALDANE EQUATION (Initial Gas Pressure,
*Inspired Gas Pressure, Gas Time Constant, Interval Time)

ARGUMENTS

REAL Initial Gas Pressure, Inspired Gas_ Pressure !input
REAL Gas_ Time Constant, Interval Time linput
REAL HALDANE EQUATION loutput

Note: The Haldane equation is applied when calculating the uptake or
elimination of compartment gases during intervals at constant depth (the
outside ambient pressure does not change).

HALDANE EQUATION = Initial Gas Pressure +

* (Inspired Gas Pressure - Initial Gas Pressure)
*(1.0 - EXP(-Gas Time Constant * Interval Time)
RETURN

END

— %

SUBROUTINE GAS LOADINGS ASCENT DESCENT

Purpose: This subprogram applies the Schreiner equation to update the

gas loadings (partial pressures of helium and nitrogen) in the half-time
compartments due to a linear ascent or descent segment at a constant rate.

SUBROUTINE GAS LOADINGS ASCENT DESCENT (Starting Depth,
* Ending Depth, Rate)

Varying Permeability Model (VPM) Decompression Program in Fortran

REAL Starting Depth, Ending Depth, Rate linput

INTEGER I lloop counter
INTEGER Last_Segment_ Number

REAL Initial Inspired He Pressure

REAL Initial_ Inspired N2_Pressure

REAL Last_Run_Time

REAL Helium Rate, Nitrogen Rate, Starting Ambient Pressure

REAL SCHREINER_EQUATION I function subprogram

REAL Water_ Vapor Pressure
COMMON /Block 8/ Water Vapor Pressure

INTEGER Segment_Number !both input
REAL Run Time, Segment Time land output
COMMON /Block 2/ Run Time, Segment Number, Segment Time

REAL Ending Ambient_ Pressure loutput
COMMON /Block 4/ Ending Ambient Pressure

INTEGER Mix Number
COMMON /Block_9/ Mix Number

REAL Barometric_Pressure
COMMON /Block 18/ Barometric Pressure

REAL Helium Time Constant (16)
COMMON /Block 1A/ Helium Time Constant

REAL Nitrogen Time Constant (16)
COMMON /Block 1B/ Nitrogen Time Constant

REAL Helium Pressure(1l6), Nitrogen Pressure(16) !both input
COMMON /Block 3/ Helium Pressure, Nitrogen Pressure land output

REAL Fraction Helium(10), Fraction Nitrogen(10)
COMMON /Block 5/ Fraction Helium, Fraction Nitrogen

REAL Initial Helium Pressure(16), Initial Nitrogen Pressure (16) loutput
COMMON /Block 23/ Initial Helium Pressure,
* Initial Nitrogen Pressure

Segment Time = (Ending Depth - Starting Depth) /Rate
Last Run Time = Run Time

Run Time = Last Run Time + Segment Time

Last_Segment Number = Segment Number

Segment Number = Last Segment Number + 1

Ending Ambient Pressure = Ending Depth + Barometric Pressure
Starting Ambient Pressure = Starting Depth + Barometric Pressure
Initial Inspired He Pressure = (Starting Ambient Pressure -

* Water Vapor Pressure) *Fraction Helium(Mix Number)
Initial Inspired N2 Pressure = (Starting Ambient Pressure -

22

NN NOON NN NN NN N

Varying Permeability Model (VPM) Decompression Program in Fortran

* Water Vapor Pressure) *Fraction Nitrogen (Mix Number)
Helium Rate = Rate*Fraction Helium(Mix Number)
Nitrogen Rate = Rate*Fraction Nitrogen (Mix Number)
DO I =1,16
Initial Helium Pressure(I) = Helium Pressure(I)
Initial Nitrogen Pressure(I) = Nitrogen Pressure (I)

Helium Pressure(I) = SCHREINER EQUATION
* (Initial_Inspired He_ Pressure, Helium Rate,
Segment Time, Helium Time Constant (I),
Initial Helium Pressure(I))

Nitrogen Pressure(I) = SCHREINER_ EQUATION
* (Initial_Inspired N2_Pressure, Nitrogen Rate,
Segment_Time, Nitrogen Time_ Constant (I),
Initial Nitrogen Pressure(I))

END

SUBROUTINE CALC CRUSHING_ PRESSURE

Purpose: Compute the effective "crushing pressure" in each compartment as
a result of descent segment (s). The crushing pressure is the gradient
(difference in pressure) between the outside ambient pressure and the

gas tension inside a VPM nucleus (bubble seed). This gradient acts to
reduce (shrink) the radius smaller than its initial wvalue at the surface.
This phenomenon has important ramifications because the smaller the radius
of a VPM nucleus, the greater the allowable supersaturation gradient upon
ascent. Gas loading (uptake) during descent, especially in the fast
compartments, will reduce the magnitude of the crushing pressure. The
crushing pressure is not cumulative over a multi-level descent. It will
be the maximum value obtained in any one discrete segment of the overall
descent. Thus, the program must compute and store the maximum crushing
pressure for each compartment that was obtained across all segments of
the descent profile.

The calculation of crushing pressure will be different depending on
whether or not the gradient is in the VPM permeable range (gas can diffuse
across skin of VPM nucleus) or the VPM impermeable range (molecules in
skin of nucleus are squeezed together so tight that gas can no longer
diffuse in or out of nucleus; the gas becomes trapped and further resists
the crushing pressure). The solution for crushing pressure in the VPM
permeable range is a simple linear equation. In the VPM impermeable
range, a cubic equation must be solved using a numerical method.

Separate crushing pressures are tracked for helium and nitrogen because
they can have different critical radii. The crushing pressures will be
the same for helium and nitrogen in the permeable range of the model, but
they will start to diverge in the impermeable range. This is due to

the differences between starting radius, radius at the onset of
impermeability, and radial compression in the impermeable range.

SUBROUTINE CALC CRUSHING PRESSURE (Starting_Depth, Ending_Depth,
* Rate)
IMPLICIT NONE

REAL Starting Depth, Ending Depth, Rate linput

23

Varying Permeability Model (VPM) Decompression Program in Fortran

INTEGER I lloop counter

REAL Starting Ambient Pressure, Ending Ambient Pressure

REAL Starting Gas_Tension, Ending Gas_Tension

REAL Crushing Pressure He, Crushing Pressure N2

REAL Gradient Onset of Imperm, Gradient Onset _of Imperm Pa
REAL Ending . Amblent Pressure_ Pa, Amb Press_Onset_of_Imperm_Pa
REAL Gas_Tension | Onset _of Imperm Pa

REAL Crushlng Pressure Pascals He, Crushing Pressure Pascals N2
REAL Starting | Gradient, Ending Gradient

REAL A He, B _He, C_He, Ending Radius_He, High Bound He

REAL Low_Bound He

REAL A N2, B N2, C_N2, Ending Radius_N2, High Bound N2

REAL Low Bound N2

REAL Radius Onset _of Imperm He, Radius Onset of Imperm N2

REAL Gradient Onset of Imperm Atm
COMMON /Block 14/ Gradient _Onset of Imperm Atm

REAL Constant Pressure Other Gases
COMMON /Block 17/ Constant Pressure Other Gases

REAL Surface Tension Gamma, Skin Compression GammaC
COMMON /Block 19/ Surface Tension Gamma, Skin Compression GammaC

REAL Units Factor
COMMON /Block 16/ Units Factor

REAL Barometric Pressure
COMMON /Block 18/ Barometric Pressure

REAL Helium Pressure(1l6), Nitrogen Pressure (16) linput
COMMON /Block 3/ Helium Pressure, Nitrogen Pressure

REAL Adjusted Critical Radius_ He (16) linput
REAL Adjusted Critical Radius N2 (16)
COMMON /Block_ 7/ Adjusted Critical Radius He,

* Adjusted_Crltlcal_Radlus_NZ

REAL Max Crushing Pressure He(16), Max Crushing Pressure N2 (16) loutput
COMMON /Block 10/ Max Crushing Pressure He,

* Max_Crushlng_Pressure_NZ

REAL Amb Pressure Onset of Imperm(16) linput

REAL Gas Tension Onset of Imperm(16)
COMMON /Block 13/ Amb Pressure Onset of Imperm,
* Gas Tension Onset of Imperm

REAL Initial Helium Pressure(16), Initial Nitrogen Pressure (16) linput
COMMON /Block 23/ Initial Helium Pressure,
* Initial Nitrogen Pressure

CALCULATIONS
First, convert the Gradient for Onset of Impermeability from units of
atmospheres to diving pressure units (either fsw or msw) and to Pascals

24

Varying Permeability Model (VPM) Decompression Program in Fortran

(SI units). The reason that the Gradient for Onset of Impermeability is
given in the program settings in units of atmospheres is because that is
how it was reported in the original research papers by Yount and
colleauges.

NN

Gradient_Onset_of Imperm = Gradient_Onset_of Imperm Atm lconvert to
* * Units_Factor !diving units

Gradient_Onset_of Imperm Pa = Gradient_Onset_of Imperm Atm !convert to
* * 101325.0 !Pascals

Starting Ambient Pressure = Starting Depth + Barometric_Pressure
Ending Ambient Pressure = Ending Depth + Barometric_Pressure

MAIN LOOP WITH NESTED DECISION TREE

For each compartment, the program computes the starting and ending

gas tensions and gradients. The VPM is different than some dissolved gas

algorithms, Buhlmann for example, in that it considers the pressure due to
oxygen, carbon dioxide, and water vapor in each compartment in addition to
the inert gases helium and nitrogen. These "other gases" are included in

the calculation of gas tensions and gradients.

DO I = 1,16
Starting Gas Tension = Initial Helium Pressure(I) +
* Initial Nitrogen Pressure(I) + Constant Pressure Other Gases

NOONOONOONQO

Starting Gradient = Starting Ambient Pressure -
* Starting Gas Tension

Ending Gas Tension = Helium Pressure(I) + Nitrogen Pressure (I)
* + Constant Pressure Other Gases

Ending Gradient = Ending Ambient Pressure - Ending Gas Tension

C Compute radius at onset of impermeability for helium and nitrogen
C critical radii

Radius Onset of Imperm He = 1.0/ (Gradient Onset of Imperm Pa/
* (2.0* (Skin Compression GammaC-Surface Tension Gamma)) +
* 1.0/Adjusted Critical Radius He(I))

Radius Onset of Imperm N2 = 1.0/ (Gradient Onset of Imperm Pa/
* (2.0* (Skin Compression GammaC-Surface Tension Gamma)) +
* 1.0/Adjusted Critical Radius N2(I))

C FIRST BRANCH OF DECISION TREE - PERMEABLE RANGE
C Crushing pressures will be the same for helium and nitrogen

Crushing Pressure He = Ending Ambient Pressure -
* Ending Gas_ Tension

Crushing Pressure N2 Ending Ambient Pressure -
* Ending Gas_ Tension

SECOND BRANCH OF DECISION TREE - IMPERMEABLE RANGE

Both the ambient pressure and the gas tension at the onset of
impermeability must be computed in order to properly solve for the ending
radius and resultant crushing pressure. The first decision block
addresses the special case when the starting gradient just happens to be

25

NN NOONOONOQn

* %k F %

Varying Permeability Model (VPM) Decompression Program in Fortran

equal to the gradient for onset of impermeability (not very likely!).

IF (Starting Gradient .EQ. Gradient Onset of Imperm) THEN
Amb Pressure Onset of Imperm(I) =
Starting Ambient Pressure
Gas Tension Onset of Imperm(I) = Starting Gas Tension
END IF

In most cases, a subroutine will be called to find these values using a
numerical method.

IF (Starting Gradient .LT. Gradient Onset_of Imperm) THEN

CALL ONSET_OF_IMPERMEABILITY Isubroutine
(Starting Ambient Pressure,
Ending Ambient Pressure, Rate, I)

Next, using the values for ambient pressure and gas tension at the onset
of impermeability, the equations are set up to process the calculations
through the radius root finder subroutine. This subprogram will find the
root (solution) to the cubic equation using a numerical method. In order
to do this efficiently, the equations are placed in the form

Ar”3 - Br®2 - C = 0, where r is the ending radius after impermeable
compression. The coefficients A, B, and C for helium and nitrogen are
computed and passed to the subroutine as arguments. The high and low
bounds to be used by the numerical method of the subroutine are also
computed (see separate page posted on Deco List ftp site entitled

"VPM: Solving for radius in the impermeable regime"). The subprogram
will return the value of the ending radius and then the crushing
pressures for helium and nitrogen can be calculated.

Ending Ambient Pressure Pa =
(Ending Ambient Pressure/Units Factor) * 101325.0

Amb_Press Onset of Imperm Pa =
(Amb_Pressure Onset of Imperm(I)/Units Factor)
* 101325.0

Gas Tension Onset of Imperm Pa =
(Gas_Tension Onset of Imperm(I)/Units Factor)
* 101325.0

B He = 2.0*(Skin Compression GammaC-Surface Tension Gamma)

A He = Ending Ambient Pressure Pa -
Amb_Press Onset of Imperm Pa +
Gas Tension Onset of Imperm Pa +
(2.0* (Skin Compression GammaC-Surface Tension Gamma))
/Radius_Onset of Imperm He

C He = Gas Tension Onset of Imperm Pa *
Radius Onset of Imperm He**3

High Bound He = Radius Onset of Imperm He
Low Bound He = B He/A He

CALL RADIUS ROOT FINDER (A He,B He,C He, Isubroutine
Low Bound He, High Bound He, Ending Radius_ He)

Crushing Pressure Pascals He =
Gradient Onset of Imperm Pa +

26

NN NQO

Varying Permeability Model (VPM) Decompression Program in Fortran

Ending Ambient Pressure Pa -

Amb_Press Onset of Imperm Pa +

Gas Ten51on Onset _of Imperm Pa *

(1.0-Radius _Onset of _Imperm He**3/Ending Radius_ He**3)

* Ok % %

Crushing Pressure He =
* (Crushing Pressure Pascals He/101325.0) * Units_ Factor

B N2 = 2.0*(Skin Compression GammaC-Surface Tension Gamma)
A N2 = Ending Ambient Pressure Pa -
Amb_Press Onset of Imperm Pa +
Gas Tension Onset of Imperm Pa +
(2.0* (Skin Compress1on GammaC-Surface Tension Gamma))
/Radius_Onset of Imperm N2

* %k % %

C N2 = Gas_Tension Onset_of Imperm Pa *
* Radius_Onset_of Imperm N2**3

High Bound N2 = Radius_Onset_of Imperm N2
Low_Bound N2 = B _N2/A N2

CALL RADIUS ROOT FINDER (A N2,B N2,C N2, !subroutine
* Low Bound N2,High Bound N2, Ending Radius N2)

Crushing Pressure Pascals N2 =
Gradient Onset _of Imperm Pa +
Ending . Amblent Pressure Pa -
Amb_Press Onset _of Imperm Pa +
Gas Ten51on Onset _of Imperm Pa *
(1.0-Radius _Onset of _Imperm N2**3/Ending Radius N2**3)

* % ok %k %

Crushing Pressure N2 =
* (Crushing Pressure Pascals N2/101325.0) * Units_ Factor

Max_ Crushing Pressure He(I) = MAX(Max_ Crushing Pressure He(I),
* Crushing Pressure He)

Max_ Crushing_ Pressure N2 (I) MAX (Max_Crushing_ Pressure N2 (I),
* Crushing Pressure_ N2)

END

SUBROUTINE ONSET OF IMPERMEABILITY

Purpose: This subroutine uses the Bisection Method to find the ambient
pressure and gas tension at the onset of impermeability for a given
compartment. Source: "Numerical Recipes in Fortran 77",

Cambridge University Press, 1992.

SUBROUTINE ONSET OF IMPERMEABILITY (Starting Ambient Pressure,
* Ending Ambient Pressure, Rate, I)

Varying Permeability Model (VPM) Decompression Program in Fortran
INTEGER I linput - array subscript for compartment

REAL Starting Ambient Pressure, Ending Ambient Pressure, Rate linput

INTEGER J lloop counter

REAL Initial Inspired He Pressure

REAL Initial Inspired N2 Pressure, Time

REAL Helium Rate, Nitrogen Rate

REAL Low_Bound, High Bound, High Bound Helium Pressure

REAL High Bound Nitrogen Pressure, Mid Range Helium Pressure
REAL Mid Range Nitrogen Pressure, Last Diff Change

REAL Function at High Bound, Function at _Low_Bound

REAL Mid Range Time, Function at Mid Range, Differential _Change
REAL Mid Range Ambient Pressure, Gas_Tens1on_at_M1d_Range
REAL Gradient Onset of Imperm

REAL Startlng_Gas_Tenslon Ending_Gas_Tension

REAL SCHREINER_EQUATION I function subprogram

REAL Water_ Vapor Pressure
COMMON /Block 8/ Water Vapor Pressure

REAL Gradient_ Onset_of Imperm Atm
COMMON /Block_14/ Gradient Onset_ of Imperm Atm

REAL Constant Pressure Other Gases
COMMON /Block 17/ Constant Pressure Other_ Gases

INTEGER Mix Number
COMMON /Block 9/ Mix Number

REAL Units Factor
COMMON /Block 16/ Units Factor

REAL Helium Time Constant (16)
COMMON /Block 1A/ Helium Time Constant

REAL Nitrogen Time Constant (16)
COMMON /Block 1B/ Nitrogen Time Constant

REAL Fraction Helium(10), Fraction Nitrogen(10)
COMMON /Block 5/ Fraction Helium, Fraction Nitrogen

REAL Amb Pressure Onset of Imperm(16) loutput
REAL Gas Tension Onset of Imperm(16)

COMMON /Block 13/ Amb Pressure Onset of Imperm,

* Gas Tension Onset of Imperm

REAL Initial Helium Pressure(16), Initial Nitrogen Pressure (16) linput
COMMON /Block 23/ Initial Helium Pressure,
* Initial Nitrogen Pressure

CALCULATIONS
First convert the Gradient for Onset of Impermeability to the diving
pressure units that are being used

28

NN OONNOONOQNNQO

Varying Permeability Model (VPM) Decompression Program in Fortran

Gradient_Onset of Imperm = Gradient_ Onset_of Imperm Atm
* * Units Factor

ESTABLISH THE BOUNDS FOR THE ROOT SEARCH USING THE BISECTION METHOD

In this case, we are solving for time - the time when the ambient pressure
minus the gas tension will be equal to the Gradient for Onset of
Impermeabliity. The low bound for time is set at zero and the high

bound is set at the elapsed time (segment time) it took to go from the
starting ambient pressure to the ending ambient pressure. The desired
ambient pressure and gas tension at the onset of impermeability will

be found somewhere between these endpoints. The algorithm checks to

make sure that the solution lies in between these bounds by first
computing the low bound and high bound function values.

Initial Inspired He Pressure = (Starting Ambient Pressure -
* Water Vapor Pressure) *Fraction Helium(Mix Number)

Initial Inspired N2 Pressure = (Starting Ambient_ Pressure -
* Water Vapor Pressure)*Fraction Nitrogen (Mix Number)

Helium Rate = Rate*Fraction Helium(Mix Number)
Nitrogen Rate = Rate*Fraction Nitrogen (Mix Number)
Low Bound = 0.0

High Bound = (Ending_ Ambient_ Pressure - Starting Ambient_ Pressure)
* /Rate

Starting Gas Tension = Initial Helium Pressure(I) +
* Initial Nltrogen Pressure (I) + Constant_Pressure_Other_Gases

Function at Low_Bound = Starting Ambient Pressure -
* Starting Gas_Tension - Gradient_ Onset_of Imperm

High Bound Helium Pressure = SCHREINER EQUATION

b (Initial Insplred He Pressure, Helium Rate,
High Bound, Helium Time Constant (I),
* Initial Helium Pressure (I))

High Bound Nitrogen Pressure = SCHREINER EQUATION

* (Initial Inspired N2 Pressure, Nitrogen Rate,
High Bound, Nltrogen_Tlme_Constant(I),
* Initial Nitrogen Pressure (I))

Ending Gas Tension = High Bound Helium Pressure +
* High Bound Nitrogen Pressure + Constant Pressure Other Gases

Function at High Bound = Ending Ambient Pressure -
* Ending Gas Tension - Gradient Onset of Imperm

IF ((Function_at_ High Bound*Function_at_Low Bound) .GE. 0.0) THEN
PRINT *, '"ERROR! ROOT IS NOT WITHIN BRACKETS'
PAUSE

APPLY THE BISECTION METHOD IN SEVERAL ITERATIONS UNTIL A SOLUTION WITH
THE DESIRED ACCURACY IS FOUND

Note: the program allows for up to 100 iterations. Normally an exit will
be made from the loop well before that number. If, for some reason, the
program exceeds 100 iterations, there will be a pause to alert the user.

IF (Function at Low Bound .LT. 0.0) THEN
Time = Low Bound
Differential Change = High Bound - Low_ Bound

29

NOONOONOOQNQO

Varying Permeability Model (VPM) Decompression Program in Fortran

ELSE
Time = High Bound
Differential Change = Low Bound - High Bound
END IF
DO J = 1, 100
Last Diff Change = Differential Change
Differential Change = Last Diff Change*0.5
Mid Range Time = Time + Differential _Change

Mid_Range Ambient Pressure = (Starting Ambient Pressure +
* Rate*Mid_ Range_ Time)

Mid_Range_ Helium Pressure = SCHREINER_ EQUATION

* (Initial Inspired He Pressure, Helium Rate,
* Mid Range Time, Hellum Time Constant (I),
* Initial Helium Pressure (I))

Mid Range Nitrogen Pressure = SCHREINER EQUATION

* (Initial Inspired N2 Pressure, Nitrogen Rate,
* Mid Range Time, Nitrogen Time Constant (I),
* Initial Nitrogen Pressure (I))

Gas_Tension at Mid Range = Mid Range Helium Pressure +
* Mid_Range_ Nitrogen Pressure + Constant_ Pressure Other_Gases

Function at_ Mid Range = Mid_Range Ambient_ Pressure -
* Gas_Tension at Mid Range - Gradient Onset of Imperm

IF (Function_at_Mid Range .LE. 0.0) Time = Mid Range_Time

IF ((ABS(Differential Change) .LT. 1.0E-3) .OR.

* (Function at Mid Range .EQ. 0.0)) GOTO 100

END DO

PRINT *, 'ERROR! ROOT SEARCH EXCEEDED MAXIMUM ITERATIONS'
PAUSE

When a solution with the desired accuracy is found, the program jumps out
of the loop to Line 100 and assigns the solution values for ambient
pressure and gas tension at the onset of impermeability.

100 Amb_Pressure_Onset_of Imperm(I) = Mid Range Ambient Pressure
Gas Tension Onset of Imperm(I) = Gas_Tension at Mld _Range

END

SUBROUTINE RADIUS ROOT FINDER

Purpose: This subroutine is a "fail-safe" routine that combines the
Bisection Method and the Newton-Raphson Method to find the desired root.
This hybrid algorithm takes a bisection step whenever Newton-Raphson would
take the solution out of bounds, or whenever Newton-Raphson is not
converging fast enough. Source: "Numerical Recipes in Fortran 77",
Cambridge University Press, 1992.

SUBROUTINE RADIUS ROOT FINDER (A,B,C, Low Bound, High Bound,
* Ending Radius)

ARGUMENTS

30

NOONOONOONOO

Varying Permeability Model (VPM) Decompression Program in Fortran

REAL A, B, C, Low_Bound, High Bound linput
REAL Ending Radius loutput

INTEGER I lloop counter

REAL Function, Derivative_of_ Function, Differential Change
REAL Last_Diff Change, Last_Ending Radius

REAL Radius_at Low Bound, Radius at High Bound

REAL Function_at_Low Bound, Function_at_High Bound

BEGIN CALCULATIONS BY MAKING SURE THAT THE ROOT LIES WITHIN BOUNDS

In this case we are solving for radius in a cubic equation of the form,
Ar®3 - Br®2 - C = 0. The coefficients A, B, and C were passed to this
subroutine as arguments.

Function at_ Low_Bound =
* Low_Bound* (Low_Bound* (A*Low Bound - B)) - C

Function at High Bound =
* High Bound* (High Bound* (A*High Bound - B)) - C

IF ((Function_at_Low_Bound .GT. 0.0) .AND.

* (Function_at_High Bound .GT. 0.0)) THEN
PRINT *, '"ERROR! ROOT IS NOT WITHIN BRACKETS'
PAUSE

END IF

Next the algorithm checks for special conditions and then prepares for
the first bisection.

IF ((Function at Low Bound .LT. 0.0) .AND.

* (Function at High Bound .LT. 0.0)) THEN
PRINT *, 'ERROR! ROOT IS NOT WITHIN BRACKETS'
PAUSE

END IF

IF (Function at Low Bound .EQ. 0.0) THEN
Ending Radius = Low_ Bound
RETURN

ELSE IF (Function at High Bound .EQ. 0.0) THEN
Ending Radius = High Bound
RETURN

ELSE IF (Function at Low Bound .LT. 0.0) THEN
Radius_at Low Bound = Low_ Bound
Radius_at High Bound = High Bound

ELSE
Radius_at High Bound = Low Bound
Radius_at Low Bound = High Bound

END IF

Ending Radius = 0.5* (Low Bound + High Bound)

Last Diff Change = ABS(High Bound-Low Bound)

Differential Change = Last Diff Change

At this point, the Newton-Raphson Method is applied which uses a function
and its first derivative to rapidly converge upon a solution.

Note: the program allows for up to 100 iterations. Normally an exit will
be made from the loop well before that number. If, for some reason, the
program exceeds 100 iterations, there will be a pause to alert the user.
When a solution with the desired accuracy is found, exit is made from the
loop by returning to the calling program. The last value of ending
radius has been assigned as the solution.

NN

Varying Permeability Model (VPM) Decompression Program in Fortran
Function = Ending Radius* (Ending Radius* (A*Ending Radius - B)) - C

Derivative_of Function =
* Ending Radius* (Ending Radius*3.0*A - 2.0%*B)

DO I = 1,100
IF ((((Ending_Radius-Radius_at_ High Bound) *

* Derivative_of Function-Function) *
* ((Ending Radius-Radius_at Low Bound) *
* Derivative_of Function-Function).GE.0.0) .OR.
* (ABS (2.0*Function) .GT.
* (ABS (Last_Diff Change*Derivative_of_ Function)))) THEN
Last_Diff Change = Differential_ Change
Differential Change = 0.5* (Radius at High Bound -
* Radius_at Low Bound)
Ending Radius = Radius_at_Low_Bound + Differential_ Change
IF (Radius_at_ Low_Bound .EQ. Ending Radius) RETURN
ELSE
Last_Diff Change = Differential_ Change
Differential Change = Function/Derivative of Function
Last_Ending Radius = Ending Radius
Ending Radius = Ending Radius - Differential Change
IF (Last_Ending Radius .EQ. Ending Radius) RETURN
END IF
IF (ABS(Differential Change) .LT. 1.0E-12) RETURN
Function =
* Ending_Radius* (Ending_Radius* (A*Ending_Radius - B)) - C
Derivative_of Function =
* Ending Radius* (Ending_Radius*3.0*A - 2.0%*B)
IF (Function .LT. 0.0) THEN
Radius_at Low Bound = Ending Radius
ELSE
Radius_at High Bound = Ending Radius
END IF
END DO
PRINT #*, '"ERROR! ROOT SEARCH EXCEEDED MAXIMUM ITERATIONS'
PAUSE

SUBROUTINE GAS LOADINGS CONSTANT DEPTH

Purpose: This subprogram applies the Haldane equation to update the

gas loadings (partial pressures of helium and nitrogen) in the half-time
compartments for a segment at constant depth.

SUBROUTINE GAS LOADINGS CONSTANT DEPTH (Depth,
* Run Time End of Segment)

Varying Permeability Model (VPM) Decompression Program in Fortran

INTEGER I lloop counter
INTEGER Last_Segment_ Number

REAL Initial Helium Pressure, Initial Nitrogen Pressure
REAL Inspired Helium Pressure, Inspired Nitrogen Pressure
REAL Ambient Pressure, Last_Run Time

REAL HALDANE EQUATION I function subprogram

REAL Water_ Vapor Pressure
COMMON /Block 8/ Water Vapor Pressure

INTEGER Segment_Number !both input
REAL Run Time, Segment Time land output
COMMON /Block 2/ Run Time, Segment Number, Segment Time

REAL Ending Ambient_ Pressure loutput
COMMON /Block_4/ Ending Ambient Pressure

INTEGER Mix_Number
COMMON /Block 9/ Mix Number

REAL Barometric_Pressure
COMMON /Block 18/ Barometric Pressure

REAL Helium Time Constant (16)
COMMON /Block 1A/ Helium Time Constant

REAL Nitrogen Time_ Constant (16)
COMMON /Block 1B/ Nitrogen Time Constant

REAL Helium Pressure(16), Nitrogen Pressure (16) !both input
COMMON /Block_3/ Helium_ Pressure, Nitrogen Pressure land output

REAL Fraction Helium(10), Fraction Nitrogen(10)
COMMON /Block 5/ Fraction Helium, Fraction Nitrogen

Segment Time = Run Time End of Segment - Run Time
Last Run Time = Run Time End of Segment

Run Time = Last Run Time

Last_ Segment Number = Segment Number

Segment Number = Last Segment Number + 1

Ambient Pressure = Depth + Barometric Pressure

Inspired Helium Pressure = (Ambient Pressure -
* Water Vapor Pressure) *Fraction Helium(Mix Number)

Inspired Nitrogen Pressure = (Ambient Pressure -
* Water Vapor Pressure)*Fraction Nitrogen (Mix Number)

Ending Ambient Pressure = Ambient Pressure

DO I = 1,16
Initial Helium Pressure = Helium Pressure (I)
Initial Nitrogen Pressure = Nitrogen Pressure(I)

Helium Pressure(I) = HALDANE EQUATION

33

NN NQO

Varying Permeability Model (VPM) Decompression Program in Fortran

* (Initial_Helium Pressure, Inspired Helium Pressure,
* Helium Time Constant (I), Segment_ Time)

Nitrogen Pressure(I) = HALDANE EQUATION
* (Initial_Nitrogen Pressure, Inspired Nitrogen Pressure,
* Nitrogen Time Constant (I), Segment Time)

END

SUBROUTINE NUCLEAR_REGENERATION

Purpose: This subprogram calculates the regeneration of VPM critical

radii that takes place over the dive time. The regeneration time constant
has a time scale of weeks so this will have very little impact on dives of
normal length, but will have a major impact for saturation dives.

SUBROUTINE NUCLEAR REGENERATION (Dive Time)

IMPLICIT NONE

INTEGER I lloop counter

REAL Crushing Pressure Pascals He, Crushing Pressure Pascals N2
REAL Ending Radius He, Ending Radius N2

REAL Crush Pressure Adjust Ratio He

REAL Crush Pressure Adjust Ratio N2

REAL Adj Crush Pressure He Pascals, Adj Crush Pressure N2 Pascals

REAL Surface Tension Gamma, Skin Compression GammaC
COMMON /Block 19/ Surface Tension Gamma, Skin Compression GammaC

REAL Regeneration Time Constant
COMMON /Block 22/ Regeneration Time Constant

REAL Units Factor
COMMON /Block 16/ Units_ Factor

REAL Adjusted Critical Radius He(16) linput
REAL Adjusted Critical Radius N2(16)
COMMON /Block 7/ Adjusted Critical Radius_ He,

* Adjusted Critical Radius N2

REAL Max Crushing Pressure He(16), Max Crushing Pressure N2 (16) linput
COMMON /Block 10/ Max Crushing Pressure He,

* Max Crushing Pressure N2

REAL Regenerated Radius He(16), Regenerated Radius N2 (16) loutput

34

NN

NN OONNONOQNAQN

Varying Permeability Model (VPM) Decompression Program in Fortran
COMMON /Block 24/ Regenerated Radius He, Regenerated Radius N2

REAL Adjusted Crushing Pressure He (16) loutput
REAL Adjusted Crushing Pressure N2 (16)

COMMON /Block 25/ Adjusted Crushing Pressure He,

* Adjusted_Crushing Pressure N2

CALCULATIONS

First convert the maximum crushing pressure obtained for each compartment
to Pascals. Next, compute the ending radius for helium and nitrogen
critical nuclei in each compartment.

DO I = 1,16
Crushing Pressure Pascals He =
* (Max Crushlng Pressure _He(I)/Units_Factor) * 101325.0

Crushing Pressure Pascals N2 =
* (Max Crushlng Pressure N2 (I)/Units_Factor) * 101325.0

Ending Radius He = 1.0/ (Crushing Pressure Pascals He/
* (2.0* (Skin_Compression GammaC - Surface Tension Gamma)) +
1. O/Adjusted Critical Radius He(I))

Ending Radius N2 = 1. 0/ (Crushlng Pressure_ Pascals N2/
* (2.0%* (Skin _Compression GammaC - Surface Tension Gamma)) +
1. O/Adjusted Critical Radius N2(I))

A "regenerated" radius for each nucleus is now calculated based on the
regeneration time constant. This means that after application of
crushing pressure and reduction in radius, a nucleus will slowly grow
back to its original initial radius over a period of time. This
phenomenon is probabilistic in nature and depends on absolute temperature.
It is independent of crushing pressure.

Regenerated Radius He(I) = Adjusted Critical Radius He (I) +
* (Ending Radius He - Adjusted Critical Radius He(I)) *
* EXP (-Dive Time/Regeneration Time Constant)

Regenerated Radius N2(I) = Adjusted Critical Radius N2 (I) +
* (Ending Radius N2 - Adjusted Critical Radius N2 (I)) *
* EXP (-Dive Time/Regeneration Time Constant)

In order to preserve reference back to the initial critical radii after
regeneration, an "adjusted crushing pressure" for the nuclei in each
compartment must be computed. In other words, this is the wvalue of
crushing pressure that would have reduced the original nucleus to the
to the present radius had regeneration not taken place. The ratio

for adjusting crushing pressure is obtained from algebraic manipulation
of the standard VPM equations. The adjusted crushing pressure, in lieu
of the original crushing pressure, is then applied in the VPM Critical
Volume Algorithm and the VPM Repetitive Algorithm.

Crush Pressure Adjust Ratio He =
* (Ending Radius He* (Adjusted Critical Radius He(I) -
* Regenerated Radius He(I))) / (Regenerated Radius He (I) *
* (Adjusted Critical Radius He(I) - Ending Radius He))

Crush Pressure Adjust Ratio N2 =

* (Ending Radius N2* (Adjusted Critical Radius N2(I) -
* Regenerated Radius N2(I))) / (Regenerated Radius N2 (I) *
* (Adjusted Critical Radius N2(I) - Ending Radius N2))
Adj Crush Pressure He Pascals = Crushing Pressure Pascals He *
* Crush Pressure Adjust Ratio He

35

NN NOON NN

Varying Permeability Model (VPM) Decompression Program in Fortran

Adj Crush Pressure N2 Pascals = Crushing Pressure Pascals N2 *
* Crush_Pressure_Adjust_Ratio N2

Adjusted Crushing Pressure He (I) =

* (Adj_Crush Pressure He Pascals / 101325.0) * Units_Factor
Adjusted_Crushing Pressure N2 (I) =

* (Adj_Crush Pressure N2 Pascals / 101325.0) * Units_Factor

END DO

END

SUBROUTINE CALC INITIAL ALLOWABLE GRADIENT

Purpose: This subprogram calculates the initial allowable gradients for
helium and nitrogren in each compartment. These are the gradients that
will be used to set the deco ceiling on the first pass through the deco
loop. If the Critical Volume Algorithm is set to "off", then these
gradients will determine the final deco schedule. Otherwise, if the
Critical Volume Algorithm is set to "on", these gradients will be further
"relaxed" by the Critical Volume Algorithm subroutine. The initial
allowable gradients are referred to as "PssMin" in the papers by Yount
and colleauges, i.e., the minimum supersaturation pressure gradients
that will probe bubble formation in the VPM nuclei that started with the
designated minimum initial radius (critical radius).

The initial allowable gradients are computed directly from the
"regenerated" radii after the Nuclear Regeneration subroutine. These
gradients are tracked separately for helium and nitrogen.

SUBROUTINE CALC INITIAL ALLOWABLE GRADIENT

IMPLICIT NONE

INTEGER I !loop counter

REAL Initial Allowable Grad He Pa, Initial Allowable Grad N2 Pa

REAL Surface Tension Gamma, Skin Compression GammaC
COMMON /Block 19/ Surface Tension Gamma, Skin Compression GammaC

REAL Units Factor
COMMON /Block 16/ Units_ Factor

REAL Regenerated Radius He(16), Regenerated Radius N2 (16) linput
COMMON /Block 24/ Regenerated Radius He, Regenerated Radius N2

REAL Allowable Gradient He(16), Allowable Gradient N2 (16) loutput
COMMON /Block 26/ Allowable Gradient He, Allowable Gradient N2

REAL Initial Allowable Gradient He(16) loutput

36

NOONOONNONOQOAN

NN NOQnN

*

Varying Permeability Model (VPM) Decompression Program in Fortran

REAL Initial Allowable_ Gradient N2 (16)
COMMON /Block 27/
Initial Allowable Gradient He, Initial Allowable Gradient N2

CALCULATIONS

The initial allowable gradients are computed in Pascals and then converted
to the diving pressure units. Two different sets of arrays are used to
save the calculations - Initial Allowable Gradients and Allowable
Gradients. The Allowable Gradients are assigned the values from Initial
Allowable Gradients however the Allowable Gradients can be changed later
by the Critical Volume subroutine. The values for the Initial Allowable
Gradients are saved in a global array for later use by both the Critical
Volume subroutine and the VPM Repetitive Algorithm subroutine.

Initial Allowable Grad N2 Pa = ((2.0*Surface Tension Gamma*
(Skin Compre551on GammaC - Surface Tension Gamma)) /
(Regenerated Radius N2 (I)*Skin Compression GammacC))

Initial Allowable Grad He Pa = ((2.0*Surface_Tension_Gamma*
(Skin Compre551on GammaC - Surface_Tension Gamma)) /
(Regenerated Radius He (I)*Skin Compression GammacC))

Initial Allowable Gradient N2(I) =
(Initial Allowable Grad N2 Pa / 101325.0) * Units_ Factor

Initial Allowable Gradient He(I) =
(Initial Allowable Grad He Pa / 101325.0) * Units_ Factor

Allowable Gradient He (I) Initial Allowable Gradient He(I)
Allowable Gradient N2(I) = Initial Allowable Gradient N2 (I)
END DO

END

SUBROUTINE CALC DECO_CEILING

Purpose: This subprogram calculates the deco ceiling (the safe ascent
depth) in each compartment, based on the allowable gradients, and then
finds the deepest deco ceiling across all compartments. This deepest
value (Deco Ceiling Depth) is then used by the Decompression Stop
subroutine to determine the actual deco schedule.

SUBROUTINE CALC DECO_CEILING (Deco Ceiling Depth)

IMPLICIT NONE

INTEGER I !loop counter

REAL Gas_Loading, Weighted Allowable Gradient
REAL Tolerated Ambient Pressure

LOCAL ARRAYS

37

NN OONOQNNQO

NN

* F o

Varying Permeability Model (VPM) Decompression Program in Fortran

REAL Constant Pressure Other Gases
COMMON /Block 17/ Constant Pressure Other Gases

REAL Barometric_Pressure
COMMON /Block 18/ Barometric Pressure

REAL Helium Pressure(16), Nitrogen Pressure (16) linput
COMMON /Block 3/ Helium Pressure, Nitrogen Pressure

REAL Allowable_Gradient He(16), Allowable Gradient N2 (16) linput
COMMON /Block 26/ Allowable Gradient He, Allowable Gradient N2

CALCULATIONS

Since there are two sets of allowable gradients being tracked, one for
helium and one for nitrogen, a "weighted allowable gradient" must be
computed each time based on the proportions of helium and nitrogen in

each compartment. This proportioning follows the methodology of
Buhlmann/Keller. If there is no helium and nitrogen in the compartment,
such as after extended periods of oxygen breathing, then the minimum value
across both gases will be used. It is important to note that if a
compartment is empty of helium and nitrogen, then the weighted allowable
gradient formula cannot be used since it will result in division by zero.

DO I = 1,16
Gas Loading = Helium Pressure(I) + Nitrogen Pressure (I)

IF (Gas_Loading .GT. 0.0) THEN
Weighted Allowable Gradient =
(Allowable Gradient He(I)* Helium Pressure(I) +
Allowable Gradient N2 (I)* Nitrogen Pressure(I))
(Helium Pressure(I) + Nitrogen Pressure(I))

/

Tolerated Ambient Pressure = (Gas_Loading +
Constant Pressure Other Gases) - Weighted Allowable Gradient

ELSE
Weighted Allowable Gradient =
MIN (Allowable Gradient He(I), Allowable Gradient N2 (I))

Tolerated Ambient Pressure =
Constant Pressure Other Gases - Weighted Allowable Gradient
END IF

The tolerated ambient pressure cannot be less than zero absolute, i.e.,
the vacuum of outer space!

IF (Tolerated Ambient Pressure .LT. 0.0) THEN
Tolerated Ambient Pressure = 0.0
END IF

The Deco Ceiling Depth is computed in a loop after all of the individual
compartment deco ceilings have been calculated. It is important that the
Deco Ceiling Depth (max deco ceiling across all compartments) only be
extracted from the compartment values and not be compared against some
initialization value. For example, if MAX(Deco Ceiling Depth . .) was

38

NN

NN NOONOONOON NN

Varying Permeability Model (VPM) Decompression Program in Fortran

compared against zero, this could cause a program lockup because sometimes
the Deco Ceiling Depth needs to be negative (but not less than zero
absolute ambient pressure) in order to decompress to the last stop at zero
depth.

Compartment Deco_Ceiling(I) =
* Tolerated Ambient Pressure - Barometric Pressure
END DO

Deco Ceiling Depth = Compartment Deco Ceiling (1)
DO I = 2,16
Deco_Ceiling Depth =
* MAX (Deco_Ceiling Depth, Compartment Deco Ceiling(I))

END

SUBROUTINE CALC MAX ACTUAL GRADIENT

Purpose: This subprogram calculates the actual supersaturation gradient
obtained in each compartment as a result of the ascent profile during
decompression. Similar to the concept with crushing pressure, the
supersaturation gradients are not cumulative over a multi-level, staged
ascent. Rather, it will be the maximum value obtained in any one discrete
step of the overall ascent. Thus, the program must compute and store the
maximum actual gradient for each compartment that was obtained across all
steps of the ascent profile. This subroutine is invoked on the last pass
through the deco stop loop block when the final deco schedule is being
generated.

The max actual gradients are later used by the VPM Repetitive Algorithm to
determine 1f adjustments to the critical radii are required. If the max
actual gradient did not exceed the initial alllowable gradient, then no
adjustment will be made. However, if the max actual gradient did exceed
the intitial allowable gradient, such as permitted by the Critical Volume
Algorithm, then the critical radius will be adjusted (made larger) on the
repetitive dive to compensate for the bubbling that was allowed on the
previous dive. The use of the max actual gradients is intended to prevent
the repetitive algorithm from being overly conservative.

SUBROUTINE CALC_MAX ACTUAL GRADIENT (Deco_ Stop Depth)

IMPLICIT NONE

INTEGER I lloop counter

REAL Compartment Gradient

REAL Constant Pressure Other Gases
COMMON /Block 17/ Constant Pressure Other Gases

NN

NN NOQONOQNN

Varying Permeability Model (VPM) Decompression Program in Fortran

REAL Barometric_Pressure
COMMON /Block 18/ Barometric Pressure

REAL Helium Pressure(16), Nitrogen Pressure (16) linput
COMMON /Block 3/ Helium Pressure, Nitrogen Pressure

REAL Max Actual_ Gradient (16)
COMMON /Block_12/ Max_Actual_Gradient loutput

CALCULATIONS
Note: negative supersaturation gradients are meaningless for this
application, so the values must be equal to or greater than zero.

DO I =1,16
Compartment Gradient = (Helium_ Pressure (I) +
* Nitrogen Pressure(I) + Constant Pressure Other Gases)
* - (Deco_Stop Depth + Barometric_Pressure)
IF (Compartment Gradient .LE. 0.0) THEN
Compartment Gradient = 0.0

END IF

Max Actual Gradient (I) =
* MAX (Max Actual Gradient (I), Compartment Gradient)
END DO

END

SUBROUTINE CALC SURFACE PHASE VOLUME TIME

Purpose: This subprogram computes the surface portion of the total phase
volume time. This is the time factored out of the integration of
supersaturation gradient x time over the surface interval. The VPM
considers the gradients that allow bubbles to form or to drive bubble
growth both in the water and on the surface after the dive.

This subroutine is a new development to the VPM algorithm in that it
computes the time course of supersaturation gradients on the surface
when both helium and nitrogen are present. Refer to separate write-up
for a more detailed explanation of this algorithm.

SUBROUTINE CALC SURFACE PHASE VOLUME TIME

IMPLICIT NONE

INTEGER I !loop counter

REAL Integral Gradient x Time, Decay Time to Zero Gradient
REAL Surface Inspired N2 Pressure

REAL Water Vapor Pressure
COMMON /Block 8/ Water Vapor Pressure

REAL Barometric Pressure

40

Varying Permeability Model (VPM) Decompression Program in Fortran

COMMON /Block 18/ Barometric Pressure

REAL Helium Time Constant (16)
COMMON /Block 1A/ Helium Time Constant

REAL Nitrogen Time Constant (16)
COMMON /Block 1B/ Nitrogen Time Constant

REAL Helium Pressure(16), Nitrogen Pressure (16) linput
COMMON /Block 3/ Helium Pressure, Nitrogen Pressure

REAL Surface_ Phase_Volume_ Time (16) loutput
COMMON /Block_11/ Surface_ Phase Volume_ Time

CALCULATIONS
Surface_Inspired N2 Pressure = (Barometric_ Pressure -
* Water Vapor Pressure)*0.79

DO I =1,16
IF (Nitrogen Pressure(I) .GT. Surface Inspired N2 Pressure)
* THEN
Surface Phase Volume Time(I)=
(Helium Pressure (I)/Helium Time Constant (I)+
(Nitrogen Pressure (I)-Surface Inspired N2_ Pressure)/
Nitrogen Time Constant (I))
/ (Helium Pressure (I) + Nitrogen Pressure(I) -
Surface Inspired N2 Pressure)

* % ok F %

ELSE IF ((Nitrogen Pressure(I) .LE.

Surface Inspired N2 Pressure) .AND.
* (Helium Pressure (I)+Nitrogen Pressure (I) .GE.
* Surface Inspired N2 Pressure)) THEN

*

Decay Time to Zero Gradient =
* 1.0/ (Nitrogen Time Constant (I)-Helium Time Constant (I))
* *ALOG ((Surface Inspired N2 Pressure -
Nitrogen Pressure(I))/Helium_ Pressure (I))

*

Integral Gradient x Time =
Helium Pressure(I)/Helium Time Constant (I)*
(1.0-EXP(-Helium Time Constant (I)*
Decay Time to Zero Gradient))+
(Nitrogen Pressure(I)-Surface Inspired N2 Pressure)/
Nitrogen Time Constant (I)*
(1.0-EXP(-Nitrogen Time Constant (I)*
Decay Time to Zero Gradient))

* Ok ok %k * X %

Surface Phase Volume Time(I) =
Integral Gradient x Time/ (Helium Pressure (I) +
* Nitrogen Pressure(I) - Surface Inspired N2 Pressure)

*

ELSE
Surface Phase Volume Time(I) = 0.0
END IF

RETURN
END

41

Varying Permeability Model (VPM) Decompression Program in Fortran

SUBROUTINE CRITICAL VOLUME

Purpose: This subprogram applies the VPM Critical Volume Algorithm. This
algorithm will compute "relaxed" gradients for helium and nitrogen based
on the setting of the Critical Volume Parameter Lambda.

SUBROUTINE CRITICAL_VOLUME (Deco_Phase Volume Time)

IMPLICIT NONE

INTEGER I lloop counter

REAL Parameter Lambda Pascals

REAL Adj Crush Pressure ~He Pascals, Adj Crush Pressure N2 Pascals
REAL Initial Allowable Grad He Pa, Initial Allowable Grad N2 Pa
REAL New_. Allowable Grad He Pascals, New_. Allowable Grad N2 Pascals
REAL B, C

REAL Surface Tension Gamma, Skin Compression GammaC
COMMON /Block 19/ Surface Tension Gamma, Skin Compression GammaC

REAL Crit Volume Parameter Lambda
COMMON /Block 20/ Crit Volume Parameter Lambda

REAL Units Factor
COMMON /Block 16/ Units_ Factor

REAL Adjusted Critical Radius_ He (16) linput
REAL Adjusted Critical Radius N2 (16)

COMMON /Block_ 7/ Adjusted Critical Radius He,

* Adjusted_Crltlcal_Radlus_NZ

REAL Surface Phase Volume Time (16) linput
COMMON /Block 11/ Surface Phase Volume Time

REAL Adjusted Crushing Pressure He (16) linput
REAL Adjusted Crushing Pressure N2 (16)

COMMON /Block 25/ Adjusted Crushing Pressure He,

* Adjusted_Crushlng_Pressure_N2

REAL Allowable Gradient He(16), Allowable Gradient N2 (16) loutput
COMMON /Block 26/ Allowable Gradient He, Allowable Gradient N2

REAL Initial Allowable Gradient He(16) linput
REAL Initial Allowable Gradient N2(16)

COMMON /Block 27/

* Initial Allowable Gradient He, Initial Allowable Gradient N2

nNOONOONNONOQOQN

Varying Permeability Model (VPM) Decompression Program in Fortran

CALCULATIONS

Note: Since the Critical Volume Parameter Lambda was defined in units of
fsw-min in the original papers by Yount and colleauges, the same
convention is retained here. Although Lambda is adjustable only in units
of fsw-min in the program settings (range from 6500 to 8300 with default
7500), it will convert to the proper value in Pascals-min in this
subroutine regardless of which diving pressure units are being used in
the main program - feet of seawater (fsw) or meters of seawater (msw).
The allowable gradient is computed using the quadratic formula (refer to
separate write-up posted on the Deco List web site).

Parameter Lambda Pascals = (Crit Volume Parameter Lambda/33.0)
* * 101325.0
DO I =1,16
Phase_Volume_Time (I) = Deco_Phase_Volume Time +
* Surface_Phase Volume Time (I)
END DO

DO I = 1,16
Adj Crush Pressure He Pascals =
* (Adjusted Crushing Pressure He(I)/Units Factor) * 101325.0

Initial Allowable_Grad He Pa =
* (Initial Allowable Gradient He(I)/Units Factor) * 101325.0

B = Initial Allowable Grad He_Pa +
(Parameter Lambda Pascals*Surface Tension Gamma) /
(Skin Compression GammaC*Phase Volume Time (I))

C = (Surface_Tension Gamma* (Surface_ Tension_ Gamma*
(Parameter Lambda_ Pascals*
Adj Crush Pressure He Pascals)))
/ (Skin Compression GammaC* (Skin Compression GammaC*
Phase Volume Time(I)))

L S .

New Allowable Grad He Pascals = (B + SQRT (B**2
* - 4.0*C)) /2.0

Allowable Gradient He(I) =
* (New_Allowable Grad He Pascals/101325.0)*Units_ Factor
END DO

DO I = 1,16
Adj Crush Pressure N2 Pascals =
* (Adjusted Crushing Pressure N2 (I)/Units Factor) * 101325.0

Initial Allowable Grad N2 Pa =
* (Initial Allowable Gradient N2 (I)/Units Factor) * 101325.0

B = Initial Allowable Grad N2 Pa +
(Parameter Lambda Pascals*Surface Tension Gamma) /
(Skin Compression GammaC*Phase Volume Time (I))

C = (Surface Tension Gamma* (Surface Tension Gamma*
(Parameter Lambda_ Pascals*
Adj Crush Pressure N2 Pascals)))
/ (Skin Compression GammaC* (Skin Compression GammaC*
Phase Volume Time(I)))

* % F

New Allowable Grad N2 Pascals = (B + SQRT (B**2
* - 4.0*C)) /2.0

Allowable Gradient N2 (I) =
* (New_Allowable Grad N2 Pascals/101325.0)*Units_ Factor

43

NN NQO

Varying Permeability Model (VPM) Decompression Program in Fortran

END

SUBROUTINE CALC START OF DECO ZONE

Purpose: This subroutine uses the Bisection Method to find the depth at
which the leading compartment just enters the decompression zone.
Source: "Numerical Recipes in Fortran 77", Cambridge University Press,
1992.

SUBROUTINE CALC_START OF DECO_ZONE (Starting Depth, Rate,
* Depth Start of Deco Zone)

INTEGER I, J lloop counters

REAL Initial Helium Pressure, Initial Nitrogen Pressure

REAL Initial Inspired He Pressure

REAL Initial Inspired N2 Pressure

REAL Time to Start of Deco Zone, Helium Rate, Nitrogen Rate

REAL Starting Ambient Pressure

REAL Cpt Depth Start of Deco Zone, Low Bound, High Bound

REAL High Bound Helium Pressure, High Bound Nitrogen Pressure

REAL Mid Range Helium Pressure, Mid Range Nitrogen Pressure

REAL Function at High Bound, Function at Low Bound, Mid Range Time
REAL Function at Mid Range, Differential Change, Last Diff Change

REAL SCHREINER EQUATION I function subprogram

REAL Water Vapor Pressure
COMMON /Block 8/ Water Vapor Pressure

REAL Constant Pressure Other Gases
COMMON /Block 17/ Constant Pressure Other Gases

INTEGER Mix Number
COMMON /Block 9/ Mix Number

REAL Barometric Pressure
COMMON /Block 18/ Barometric Pressure

REAL Helium Time Constant (16)
COMMON /Block 1A/ Helium Time Constant

REAL Nitrogen Time Constant (16)
COMMON /Block 1B/ Nitrogen Time Constant

44

NN NOONOONOn

Varying Permeability Model (VPM) Decompression Program in Fortran

REAL Helium Pressure(16), Nitrogen Pressure (16)
COMMON /Block_3/ Helium Pressure, Nitrogen Pressure

REAL Fraction Helium(10), Fraction Nitrogen(10)
COMMON /Block 5/ Fraction Helium, Fraction Nitrogen

CALCULATIONS
First initialize some variables

Depth Start of Deco Zone = 0.0
Starting Ambient Pressure = Starting Depth + Barometric_Pressure

Initial Inspired He Pressure = (Starting Ambient_ Pressure -
* Water_ Vapor Pressure) *Fraction Helium(Mix_ Number)

Initial Inspired N2 Pressure = (Starting Ambient Pressure -
* Water Vapor Pressure) *Fraction Nitrogen (Mix Number)

Helium Rate = Rate * Fraction_ Helium(Mix Number)
Nitrogen Rate = Rate * Fraction Nitrogen (Mix Number)

ESTABLISH THE BOUNDS FOR THE ROOT SEARCH USING THE BISECTION METHOD

AND CHECK TO MAKE SURE THAT THE ROOT WILL BE WITHIN BOUNDS. PROCESS

EACH COMPARTMENT INDIVIDUALLY AND FIND THE MAXIMUM DEPTH ACROSS ALL
COMPARTMENTS (LEADING COMPARTMENT)

In this case, we are solving for time - the time when the gas tension in
the compartment will be equal to ambient pressure. The low bound for time
is set at zero and the high bound is set at the time it would take to
ascend to zero ambient pressure (absolute). Since the ascent rate is
negative, a multiplier of -1.0 is used to make the time positive. The
desired point when gas tension equals ambient pressure is found at a time
somewhere between these endpoints. The algorithm checks to make sure that
the solution lies in between these bounds by first computing the low bound
and high bound function values.

Low Bound = 0.0
High Bound = -1.0* (Starting Ambient Pressure/Rate)
DO 200 T = 1,16
Initial Helium Pressure = Helium Pressure(I)
Initial Nitrogen Pressure = Nitrogen Pressure(I)

Function at Low Bound = Initial Helium Pressure +
* Initial Nitrogen Pressure + Constant Pressure Other Gases

* - Starting Ambient Pressure

High Bound Helium Pressure = SCHREINER EQUATION

* (Initial Inspired He Pressure, Helium Rate,
* High Bound, Helium Time Constant (I),
* Initial Helium Pressure)

High Bound Nitrogen Pressure = SCHREINER EQUATION

* (Initial Inspired N2 Pressure, Nitrogen Rate,
* High Bound, Nitrogen Time Constant (I),
* Initial Nitrogen Pressure)

Function at High Bound = High Bound Helium Pressure +
* High Bound Nitrogen Pressure+Constant Pressure Other Gases

IF ((Function at High Bound * Function at Low Bound) .GE. 0.0)
* THEN
PRINT *, 'ERROR! ROOT IS NOT WITHIN BRACKETS'

Varying Permeability Model (VPM) Decompression Program in Fortran

c APPLY THE BISECTION METHOD IN SEVERAL ITERATIONS UNTIL A SOLUTION WITH
c THE DESIRED ACCURACY IS FOUND
C Note: the program allows for up to 100 iterations. Normally an exit will
C be made from the loop well before that number. If, for some reason, the
C program exceeds 100 iterations, there will be a pause to alert the user.
C===
IF (Function_at_Low Bound .LT. 0.0) THEN
Time_to_ Start_of Deco_Zone = Low_Bound
Differential Change = High Bound - Low_ Bound
ELSE
Time_ to_Start_of Deco_Zone = High Bound
Differential Change = Low Bound - High Bound
END IF
DO 150 J = 1, 100
Last Diff Change = Differential Change
Differential Change = Last Diff Change*0.5
Mid Range Time = Time to Start of Deco Zone +
* Differential Change
Mid_Range_ Helium Pressure = SCHREINER_ EQUATION
* (Initial_Inspired He_ Pressure, Helium Rate,
* Mid_Range_Time, Helium Time Constant (I),
* Initial Helium Pressure)
Mid Range Nitrogen Pressure = SCHREINER EQUATION
* (Initial Inspired N2 Pressure, Nitrogen Rate,
* Mid Range Time, Nitrogen Time Constant (I),
* Initial Nitrogen Pressure)
Function at Mid Range =
* Mid Range Helium Pressure +
* Mid Range Nitrogen Pressure +
* Constant Pressure Other Gases -
* (Starting Ambient Pressure + Rate*Mid Range Time)
IF (Function at Mid Range .LE. 0.0)
* Time to Start of Deco Zone = Mid Range Time
IF ((ABS(Differential Change) .LT. 1.0E-3) .OR.
* (Function at Mid Range .EQ. 0.0)) GOTO 170
150 CONTINUE

PRINT *, 'ERROR! ROOT SEARCH EXCEEDED MAXIMUM ITERATIONS'

PAUSE
C===
C When a solution with the desired accuracy is found, the program jumps out
C of the loop to Line 170 and assigns the solution value for the individual
c compartment.
C===
170 Cpt Depth Start of Deco Zone = (Starting Ambient Pressure +

* Rate*Time to Start of Deco Zone) - Barometric Pressure
C===
C The overall solution will be the compartment with the maximum depth where
C gas tension equals ambient pressure (leading compartment) .
C===

Depth Start of Deco Zone = MAX (Depth Start of Deco Zone,

* Cpt_Depth Start of Deco Zone)

200 CONTINUE
C===
c END OF SUBROUTINE
C===
RETURN
END

46

Varying Permeability Model (VPM) Decompression Program in Fortran

SUBROUTINE PROJECTED_ASCENT

Purpose: This subprogram performs a simulated ascent outside of the main
program to ensure that a deco ceiling will not be violated due to unusual
gas loading during ascent (on-gassing). If the deco ceiling is wviolated,
the stop depth will be adjusted deeper by the step size until a safe
ascent can be made.

SUBROUTINE PROJECTED_ASCENT (Starting_Depth, Rate,
* Deco_Stop Depth, Step Size)
IMPLICIT NONE

ARGUMENTS
REAL Starting Depth, Rate, Step Size linput
REAL Deco_Stop_Depth linput and output

INTEGER I lloop counter

REAL Initial Inspired He Pressure, Initial Inspired N2 Pressure
REAL Helium Rate, Nitrogen Rate

REAL Starting Ambient Pressure, Ending Ambient Pressure

REAL New Ambient Pressure, Segment Time

REAL Temp Helium Pressure, Temp Nitrogen Pressure

REAL Weighted Allowable Gradient

REAL SCHREINER EQUATION I function subprogram

REAL Initial Helium Pressure(16), Initial Nitrogen Pressure (16)
REAL Temp Gas_Loading(16), Allowable Gas Loading (16)

REAL Water Vapor Pressure
COMMON /Block 8/ Water Vapor Pressure

REAL Constant Pressure Other Gases
COMMON /Block 17/ Constant Pressure Other Gases

INTEGER Mix Number
COMMON /Block 9/ Mix Number

REAL Barometric Pressure
COMMON /Block 18/ Barometric Pressure

REAL Helium Time Constant (16)
COMMON /Block 1A/ Helium Time Constant

REAL Nitrogen Time Constant (16)
COMMON /Block 1B/ Nitrogen Time Constant

REAL Helium Pressure(l6), Nitrogen Pressure(16) linput
COMMON /Block 3/ Helium Pressure, Nitrogen Pressure

REAL Fraction Helium(10), Fraction Nitrogen(10)
COMMON /Block 5/ Fraction Helium, Fraction Nitrogen

47

665

670

Varying Permeability Model (VPM) Decompression Program in Fortran

REAL Allowable Gradient He(16), Allowable Gradient N2 (16) linput
COMMON /Block 26/ Allowable Gradient He, Allowable Gradient N2

New Ambient Pressure = Deco_Stop Depth + Barometric Pressure
Starting Ambient Pressure = Starting Depth + Barometric Pressure

Initial Inspired He Pressure = (Starting Ambient Pressure -
* Water Vapor Pressure) *Fraction Hellum(Mlx Number)

Initial Inspired N2 Pressure = (Starting Ambient_ Pressure -
* Water Vapor Pressure) *Fraction Nitrogen (Mix Number)

Helium Rate = Rate * Fraction_ Helium(Mix Number)
Nitrogen Rate = Rate * Fraction Nitrogen (Mix Number)
DO I =1,16

Initial Helium Pressure(I) = Helium Pressure(I)
Initial Nitrogen Pressure(I) = Nitrogen Pressure (I)
END DO

Ending Ambient Pressure = New_Ambient Pressure

Segment Time = (Ending Ambient Pressure -
* Starting . Amblent Pressure) /Rate

DO 670 I = 1,16
Temp Helium Pressure = SCHREINER EQUATION

* (Initial Inspired He Pressure, Helium Rate,
* Segment Time, Hellum Time Constant (I),
* Initial Helium Pressure (I))
Temp Nitrogen Pressure = SCHREINER EQUATION
* (Initial_Inspired N2_Pressure, Nitrogen Rate,
* Segment Time, Nitrogen Time Constant (I),
* Initial Nitrogen Pressure(I))
Temp Gas Loading(I) = Temp Helium Pressure +
* Temp Nitrogen Pressure

IF (Temp_Gas_Loading(I) .GT. 0.0) THEN
Weighted Allowable Gradient =

* (Allowable Gradient He(I)* Temp_Helium Pressure +
* Allowable_Gradient N2 (I)* Temp Nitrogen Pressure) /
* Temp_ Gas_Loading(I)
ELSE
Weighted Allowable Gradient =
* MIN (Allowable | Gradient _He (I),Allowable Gradient N2(I))
END IF
Allowable Gas Loading(I) = Ending Ambient Pressure +
* Weighted Allowable Gradient - Constant Pressure Other Gases
CONTINUE
DO 671 I = 1,16
IF (Temp Gas Loading(I) .GT. Allowable Gas Loading(I)) THEN

New Ambient Pressure = Ending . Amblent Pressure + Step Size
Deco Stop . Depth = Deco_Stop Depth + Step Size
GOTO 665
END IF
CONTINUE

RETURN

48

Varying Permeability Model (VPM) Decompression Program in Fortran

END

SUBROUTINE DECOMPRESSION_STOP
Purpose: This subprogram calculates the required time at each
decompression stop.

SUBROUTINE DECOMPRESSION STOP (Deco_Stop_Depth, Step_ Size)

IMPLICIT NONE

CHARACTER OS_Command*3

INTEGER I lloop counter
INTEGER Last_Segment_ Number

REAL Ambient_ Pressure

REAL Inspired Helium Pressure, Inspired Nitrogen Pressure
REAL Last_Run_Time

REAL Deco_Ceiling Depth, Next Stop

REAL Round Up Operation, Temp Segment Time, Time Counter
REAL Weighted Allowable_Gradient

REAL HALDANE EQUATION I function subprogram

REAL Initial Helium Pressure (16)
REAL Initial Nitrogen Pressure(16)

REAL Water Vapor Pressure
COMMON /Block 8/ Water Vapor Pressure

REAL Constant Pressure Other Gases
COMMON /Block 17/ Constant Pressure Other Gases

REAL Minimum Deco Stop Time
COMMON /Block 21/ Minimum Deco Stop Time

INTEGER Segment Number
REAL Run Time, Segment Time
COMMON /Block 2/ Run Time, Segment Number, Segment Time

REAL Ending Ambient Pressure
COMMON /Block 4/ Ending Ambient Pressure

INTEGER Mix Number
COMMON /Block 9/ Mix Number

REAL Barometric Pressure
COMMON /Block 18/ Barometric Pressure

GLOBAL ARRAYS IN NAMED COMMON BLOCKS

49

700

Varying Permeability Model (VPM) Decompression Program in Fortran

REAL Helium Time Constant (16)
COMMON /Block 1A/ Helium Time Constant

REAL Nitrogen Time Constant (16)
COMMON /Block 1B/ Nitrogen Time Constant

REAL Helium Pressure(16), Nitrogen Pressure (16) !both input
COMMON /Block_3/ Helium Pressure, Nitrogen Pressure land output

REAL Fraction Helium(10), Fraction Nitrogen(10)
COMMON /Block 5/ Fraction Helium, Fraction Nitrogen

REAL Allowable Gradient He(16), Allowable Gradient N2 (16) linput
COMMON /Block 26/ Allowable Gradient He, Allowable Gradient N2

OS_Command = 'CLS'

Last_Run Time = Run_Time

Round Up Operation = ANINT((Last Run Time/Minimum Deco_Stop Time)
* + 0.5) * Minimum Deco_Stop_ Time
Segment Time = Round Up Operation - Run Time

Run Time = Round Up Operation

Temp_Segment_Time = Segment_ Time

Last_Segment Number = Segment Number

Segment Number = Last Segment Number + 1

Ambient Pressure = Deco_Stop_Depth + Barometric_Pressure
Ending Ambient Pressure = Ambient Pressure

Next Stop = Deco_ Stop Depth - Step Size

Inspired Helium Pressure = (Ambient Pressure -
* Water Vapor Pressure) *Fraction Helium(Mix_ Number)

Inspired Nitrogen Pressure = (Ambient Pressure -
* Water Vapor Pressure) *Fraction Nitrogen (Mix Number)

Check to make sure that program won't lock up if unable to decompress
to the next stop. If so, write error message and terminate program.

DO I = 1,16

IF ((Inspired Helium Pressure + Inspired Nitrogen Pressure)
* .GT. 0.0) THEN
Weighted Allowable Gradient =
* (Allowable Gradient He(I)* Inspired Helium Pressure +
* Allowable Gradient N2 (I)* Inspired Nitrogen Pressure) /
* (Inspired Helium Pressure + Inspired Nitrogen Pressure)
IF ((Inspired Helium Pressure + Inspired Nitrogen Pressure +
* Constant Pressure Other Gases - Weighted Allowable Gradient)
* .GT. (Next Stop + Barometric Pressure)) THEN

CALL SYSTEMQQ (OS_Command)
WRITE (*,905) Deco_ Stop Depth
WRITE (*,906)
WRITE (*,907)
STOP 'PROGRAM TERMINATED'
END IF
END IF
END DO

DO 720 I = 1,16

Initial Helium Pressure(I) = Helium Pressure(I)
Initial Nitrogen Pressure(I) = Nitrogen Pressure (I)

50

720

[eNONOEONP!

Varying Permeability Model (VPM) Decompression Program in Fortran
Helium Pressure(I) = HALDANE EQUATION
* (Initial Helium Pressure(I), Inspired Helium Pressure,

* Helium Time Constant (I), Segment Time)

Nitrogen Pressure(I) = HALDANE EQUATION

* (Initial Nitrogen Pressure(I), Inspired Nitrogen Pressure,
* Nitrogen Time Constant (I), Segment Time)
CONTINUE

CALL CALC DECO CEILING (Deco Ceiling Depth)
IF (Deco_Ceiling Depth .GT. Next_ Stop) THEN
Segment_Time = Minimum Deco_Stop_ Time
Time_ Counter = Temp_ Segment_ Time
Temp_Segment_Time = Time_Counter + Minimum Deco_Stop_Time
Last_Run Time = Run_Time
Run Time = Last Run Time + Minimum Deco Stop Time
GOTO 700
END IF
Segment_Time = Temp_Segment Time

RETURN

FORMAT ('OERROR! OFF-GASSING GRADIENT IS TOO SMALL TO DECOMPRESS'
*1X,'AT THE',F6.1,1X, 'STOP'")

FORMAT ('OREDUCE STEP SIZE OR INCREASE OXYGEN FRACTION')

FORMAT (' ')

SUBROUTINE GAS LOADINGS SURFACE INTERVAL
Purpose: This subprogram calculates the gas loading (off-gassing) during
a surface interval.

SUBROUTINE GAS LOADINGS SURFACE INTERVAL (Surface Interval Time)

IMPLICIT NONE

INTEGER I !loop counter

REAL Inspired Helium Pressure, Inspired Nitrogen Pressure
REAL Initial Helium Pressure, Initial Nitrogen Pressure

REAL HALDANE EQUATION I function subprogram

REAL Water Vapor Pressure
COMMON /Block 8/ Water Vapor Pressure

REAL Barometric Pressure

51

NN

Varying Permeability Model (VPM) Decompression Program in Fortran

COMMON /Block 18/ Barometric Pressure

REAL Helium Time Constant (16)
COMMON /Block 1A/ Helium Time Constant

REAL Nitrogen Time Constant (16)
COMMON /Block 1B/ Nitrogen Time Constant

REAL Helium Pressure(16), Nitrogen Pressure (16) !both input
COMMON /Block_3/ Helium_ Pressure, Nitrogen Pressure land output
CALCULATIONS

Inspired Helium Pressure = 0.0
Inspired Nitrogen Pressure = (Barometric_ Pressure -
* Water Vapor Pressure)*0.79
DO I =1,16
Initial Helium Pressure = Helium Pressure(I)
Initial Nitrogen Pressure = Nitrogen Pressure (I)

Helium Pressure(I) = HALDANE EQUATION
* (Initial_Helium Pressure, Inspired Helium Pressure,

* Helium Time Constant (I), Surface Interval Time)

Nitrogen Pressure(I) = HALDANE EQUATION

* (Initial_Nitrogen Pressure, Inspired Nitrogen Pressure,
* Nitrogen Time_Constant (I), Surface_Interval Time)
END DO

END

SUBROUTINE VPM REPETITIVE ALGORITHM
Purpose: This subprogram implements the VPM Repetitive Algorithm that was
envisioned by Professor David E. Yount only months before his passing.

SUBROUTINE VPM REPETITIVE ALGORITHM (Surface Interval Time)

IMPLICIT NONE

INTEGER I !loop counter

REAL Max Actual Gradient Pascals

REAL Adj Crush Pressure He Pascals, Adj Crush Pressure N2 Pascals
REAL Initial Allowable Grad He Pa, Initial Allowable Grad N2 Pa
REAL New Critical Radius He, New Critical Radius N2

REAL Surface Tension Gamma, Skin Compression GammaC
COMMON /Block 19/ Surface Tension Gamma, Skin Compression GammaC

52

Varying Permeability Model (VPM) Decompression Program in Fortran

REAL Regeneration Time Constant
COMMON /Block 22/ Regeneration Time Constant

REAL Units Factor
COMMON /Block 16/ Units_ Factor

REAL Initial Critical Radius He(16)
REAL Initial Critical Radlus _N2(16)
COMMON /Block 6/ Initial _Critical Radius He,

Initial Cr1t1ca1 Radlus _N2

REAL Adjusted Critical Radius He(16)
REAL Adjusted Critical Radlus _N2(16)
COMMON /Block 7/ Adjusted Critical Radius He,

*

Adjusted Critical Radlus _N2

REAL Max Actual_ Gradient (16)
COMMON /Block_12/ Max_Actual_Gradient

REAL Adjusted Crushing Pressure He (16)
REAL Adjusted Crushing Pressure N2 (16)
COMMON /Block 25/ Adjusted Crushing Pressure He,

Adjusted_Crushlng_Pressure_N2

REAL Initial Allowable Gradient He(16)
REAL Initial Allowable Gradient N2 (16)
COMMON /Block 27/

Initial Allowable Gradient He, Initial Allowable Gradient

loutput

linput

linput

linput

N2

1,16
Max Actual Gradient Pascals =

(Max_. Actual Gradlent /Unlts Factor) * 101325.0

Adj Crush Pressure He Pascals =

(Adjusted Crushing Pressure He(I)/Units Factor) * 1013

Adj Crush Pressure N2 Pascals =

(Adjusted Crushlng Pressure N2 (I)/Units Factor) * 1013

Initial Allowable Grad He Pa =

(Initial Allowable Gradient He(I)/Units Factor) * 1013

Initial Allowable Grad N2 Pa =

(Initial Allowable Gradlent N2 (I)/Units Factor) * 1013

(Max Actual Gradient (I)

.GT. Initial Allowable Gradient N2(I))
New Critical Radius N2 = ((2.0*Surface Tension Gamma*
(Skin Compression GammaC - Surface Tension Gamma))) /

(Max_Actual Gradient Pascals*Skin Compre551on GammaC -
Surface Tension Gamma*Adj Crush Pressure N2 Pascals)

Adjusted Critical Radius N2 (I) =
Initial Critical Radius N2(I) +

25.0

25.0

25.0

25.0

THEN

(Initial Critical Radius N2 (I)-New Critical Radius N2)*

EXP (-Surface Interval Time/Regeneration Time Constant)

ELSE

53

NOONOONOOONON

Varying Permeability Model (VPM) Decompression Program in Fortran

Adjusted Critical Radius N2 (I) =
* Initial Critical Radlus N2()
END IF

IF (Max Actual Gradient (I)

* .GT. Initial Allowable_ Gradient He(I)) THEN
New Critical Radius He = ((2.0*Surface Tension Gamma*

* (Skin Compress1on GammaC - Surface Tension Gamma))) /

* (Max Actual Gradient Pascals*Skin Compress1on GammaC -

* Surface_ Tension Gamma*Adj Crush_ Pressure He Pascals)

Adjusted Critical Radius He(I) =

* Initial Critical Radlus He(I) +
* (In1t1a1 Critical _Radius He(I)-New Critical Radius He) *
* EXP (- Surface Interval Tlme/Regeneratlon Time Constant)
ELSE
Adjusted Critical Radius He(I) =
* Initial Critical Radlus He(I)
END IF
END DO

END

SUBROUTINE CALC BAROMETRIC PRESSURE

Purpose: This sub calculates barometric pressure at altitude based on the
publication "U.S. Standard Atmosphere, 1976", U.S. Government Printing
Office, Washington, D.C. The source for this code is a Fortran 90 program
written by Ralph L. Carmichael (retired NASA researcher) and endorsed by
the National Geophysical Data Center of the National Oceanic and
Atmospheric Administration. It is available for download free from
Public Domain Aeronautical Software at: http://www.pdas.com/atmos.htm

SUBROUTINE CALC BAROMETRIC PRESSURE (Altitude)

IMPLICIT NONE

REAL Radius of Earth, Acceleration of Gravity

REAL Molecular weight of Air, Gas Constant R

REAL Temp_ at Sea Level, Temp Gradient

REAL Pressure_at Sea Level Fsw, Pressure at Sea Level Msw

REAL Pressure_ at Sea Level, GMR Factor

REAL Altitude Feet, Altitude Meters

REAL Altitude Kilometers, Geopotential Altitude
REAL Temp_ at Geopotential Altitude

LOGICAL Units Equal Fsw, Units Equal Msw

54

NN

Varying Permeability Model (VPM) Decompression Program in Fortran

COMMON /Block_15/ Units_Equal_Fsw, Units_ Equal_Msw

REAL Barometric_Pressure loutput
COMMON /Block 18/ Barometric Pressure
CALCULATIONS
Radius _of Earth = 6369.0 lkilometers
Acceleration_of Gravity = 9.80665 Imeters/second”2
Molecular_weight of Air = 28.9644 !mols
Gas_ Constant R = 8.31432 !Joules/mol*deg Kelvin
Temp at Sea Level = 288.15 !degrees Kelvin
Pressure_ at Sea Level Fsw = 33.0 !feet of seawater based on 101325 Pa
lat sea level (Standard Atmosphere)
Pressure_ at Sea Level Msw = 10.0 !meters of seawater based on 100000 Pa
lat sea level (European System)
Temp Gradient = -6.5 IChange in Temp deg Kelvin with

Ichange in geopotential altitude,
lvalid for first layer of atmosphere
lup to 11 kilometers or 36,000 feet

GMR_ Factor = Acceleration of Gravity *
* Molecular weight of Air / Gas_Constant R

IF (Units_Equal_Fsw) THEN
Altitude_Feet = Altitude
Altitude Kilometers = Altitude Feet / 3280.839895
Pressure_at Sea Level = Pressure_at Sea Level Fsw
END IF
IF (Units_Equal_Msw) THEN
Altitude_Meters = Altitude
Altitude Kilometers = Altitude Meters / 1000.0
Pressure_at Sea Level = Pressure_at Sea Level Msw
END IF

Geopotential Altitude = (Altitude Kilometers * Radius_of_ Earth) /
* (Altitude Kilometers + Radius of Earth)

Temp_at Geopotential Altitude = Temp at Sea Level
* + Temp_Gradient * Geopotential Altitude

Barometric Pressure = Pressure_at_Sea_Level *
* EXP (ALOG (Temp_at Sea Level / Temp_ at Geopotential Altitude) *
* GMR_Factor / Temp_ Gradient)

END

SUBROUTINE VPM ALTITUDE DIVE ALGORITHM

Purpose: This subprogram updates gas loadings and adjusts critical radii
(as required) based on whether or not diver is acclimatized at altitude or
makes an ascent to altitude before the dive.

SUBROUTINE VPM ALTITUDE DIVE ALGORITHM

IMPLICIT NONE

Varying Permeability Model (VPM) Decompression Program in Fortran

LOCAL VARIABLES

CHARACTER Diver Acclimatized at Altitude*3, OS_Command*3
INTEGER I lloop counter
LOGICAL Diver Acclimatized

REAL Altitude of Dive, Starting Acclimatized Altitude

REAL Ascent_to_ Altitude Hours, Hours_at Altltude Before Dive
REAL Ascent to Altitude Time, Time at Altitude Before Dive
REAL Starting Ambient Pressure, Ending Ambient Pressure

REAL Initial Inspired N2 Pressure, Rate, Nitrogen Rate

REAL Inspired Nitrogen Pressure, Initial Nitrogen_ Pressure
REAL Compartment Gradient, Compartment Gradient Pascals

REAL Gradient_ He Bubble Formation, Gradient N2 Bubble Formation
REAL New_Crltlcal_Radlus He, New Critical Radlus _N2

REAL Ending Radius He, Ending Radius N2

REAL Regenerated Radius He, Regenerated Radius N2

REAL HALDANE EQUATION I function subprogram

REAL SCHREINER_EQUATION I function subprogram

REAL Water_ Vapor Pressure
COMMON /Block 8/ Water Vapor Pressure

REAL Constant Pressure Other Gases
COMMON /Block 17/ Constant Pressure Other Gases

REAL Surface Tension Gamma, Skin Compression GammaC
COMMON /Block 19/ Surface Tension Gamma, Skin Compression GammaC

REAL Regeneration Time Constant
COMMON /Block 22/ Regeneration Time Constant

LOGICAL Units Equal Fsw, Units Equal Msw
COMMON /Block 15/ Units Equal Fsw, Units Equal Msw

REAL Units Factor
COMMON /Block 16/ Units_ Factor

REAL Barometric_Pressure
COMMON /Block 18/ Barometric Pressure

REAL Nitrogen Time Constant (16)
COMMON /Block 1B/ Nitrogen Time Constant

REAL Helium Pressure(16), Nitrogen Pressure (16) Iboth input
COMMON /Block 3/ Helium Pressure, Nitrogen Pressure land output
REAL Initial Critical_Radius_He (16) !both input
REAL Initial Critical Radius N2 (16) land output
COMMON /Block 6/ Initial _Critical Radius He,

* Initial Cr1t1ca1 Radlus N2

REAL Adjusted_Critical_ Radius_He (16) loutput

56

Varying Permeability Model (VPM) Decompression Program in Fortran

REAL Adjusted Critical Radius N2 (16)
COMMON /Block 7/ Adjusted Critical Radius_He,
* Adjusted Critical Radlus _ N2

NAMELIST FOR PROGRAM SETTINGS (READ IN FROM ASCII TEXT FILE)

NAMELIST /Altitude Dive Settings/ Altitude of Dive,
Diver Acclimatized at Altitude,
Startlng Acclimatized _Altitude, Ascent_to_ Altitude_ Hours,
Hours_at_Altitude_ Before_Dive

0OS_Command = 'CLS'
OPEN (UNIT = 12, FILE = 'ALTITUDE.SET', STATUS = 'UNKNOWN',
* ACCESS = 'SEQUENTIAL', FORM = 'FORMATTED')

READ (12,Altitude Dive Settings)

IF ((Units_Equal_Fsw) .AND. (Altitude of Dive .GT. 30000.0)) THEN
CALL SYSTEMQQ (OS_Command)
WRITE (*,900)
WRITE (*,901)
STOP 'PROGRAM TERMINATED'
END IF
IF ((Units Equal Msw) .AND. (Altitude of Dive .GT. 9144.0)) THEN
CALL SYSTEMQQ (OS_Command)
WRITE (*,900)
WRITE (*,901)
STOP 'PROGRAM TERMINATED'

END IF

IF ((Diver Acclimatized at Altitude .EQ. 'YES') .OR.

* (Diver Acclimatized at Altitude .EQ. 'yes')) THEN
Diver Acclimatized = (.TRUE.)

ELSE IF ((Diver Acclimatized at Altitude .EQ. 'NO') .OR.

* (Diver Acclimatized at Altitude .EQ. 'no')) THEN
Diver Acclimatized = (.FALSE.)

ELSE

CALL SYSTEMQQ (OS_Command)

WRITE (*,902)

WRITE (*,901)

STOP 'PROGRAM TERMINATED'
END IF

Ascent to Altitude Time = Ascent to Altitude Hours * 60.0
Time at Altitude Before Dive = Hours at Altitude Before Dive*60.0

IF (Diver Acclimatized) THEN
CALL CALC_ BAROMETRIC PRESSURE (Altitude of Dive) Isubroutine
WRITE (*,802) Altitude of Dive, Barometric Pressure
DO I = 1,16
Adjusted Critical Radius N2 (I)

Initial Critical Radius N2 (I)

Adjusted Critical Radius He(I) = Initial Critical Radius He(I)
Helium Pressure(I) = 0.0
Nitrogen Pressure(I) = (Barometric Pressure -
* Water Vapor Pressure)*0.79
END DO
ELSE
IF ((Starting Acclimatized Altitude .GE. Altitude of Dive)
* .OR. (Starting . Accllmatlzed Altitude .LT. 0.0)) THEN

CALL SYSTEMQQ (OS_Command)
WRITE (*,903)

57

* % X %k X

Varying Permeability Model (VPM) Decompression Program in Fortran

WRITE (*,904)
WRITE (*,901)
STOP 'PROGRAM TERMINATED'
END IF
CALL CALC BAROMETRIC PRESSURE !subroutine
(Starting Acclimatized Altitude)
Starting Ambient Pressure = Barometric Pressure
DO I =1,16
Helium Pressure(I) = 0.0
Nitrogen Pressure(I) = (Barometric Pressure -
Water Vapor_ Pressure)*0.79
END DO
CALL CALC BAROMETRIC PRESSURE (Altitude of Dive) !subroutine
WRITE (*,802) Altitude_of Dive, Barometric_Pressure
Ending Ambient Pressure = Barometric_ Pressure

Initial Inspired N2 Pressure = (Starting Ambient Pressure
- Water Vapor Pressure)*0.79
Rate = (Ending Ambient Pressure - Starting Ambient Pressure)

/ Ascent to Altitude Time
Nitrogen Rate = Rate*0.79

DO I = 1,16
Initial Nitrogen Pressure = Nitrogen Pressure(I)

Nitrogen Pressure(I) = SCHREINER EQUATION
(Initial Inspired N2 Pressure, Nitrogen Rate,
Ascent to Altitude Time, Nitrogen Time Constant (I),
Initial Nitrogen Pressure)

Compartment Gradient = (Nitrogen Pressure(I)
+ Constant Pressure Other Gases)
- Ending Ambient Pressure

Compartment Gradient Pascals =
(Compartment Gradient / Units Factor) * 101325.0

Gradient He Bubble Formation =

((2.0*Surface Tension Gamma*

(Skin Compression GammaC - Surface Tension Gamma)) /
(Initial Critical Radius He (I)*Skin Compression GammacC))

IF (Compartment Gradient Pascals .GT.
Gradient He Bubble Formation) THEN

New Critical Radius He = ((2.0*Surface Tension Gamma*
(Skin Compression GammaC - Surface Tension Gamma))) /
(Compartment Gradient Pascals*Skin Compression GammacC)

Adjusted Critical Radius He(I) =
Initial Critical Radius He(I) +
(Initial Critical Radius He(I) -
New Critical Radius He) *
EXP(-Time at Altitude Before Dive/
Regeneration Time Constant)

Initial Critical Radius He(I) =
Adjusted Critical Radius He (I)

ELSE
Ending Radius He = 1.0/ (Compartment Gradient Pascals/
(2.0* (Surface Tension Gamma-Skin Compression GammacC))
+ 1.0/Initial Critical Radius He(I))

Regenerated Radius He =
Initial Critical Radius He(I) +

58

Varying Permeability Model (VPM) Decompression Program in Fortran

(Ending Radius He - Initial Critical Radius He(I)) *
EXP (-Time at Altitude Before Dive/
Regenerat1on_T1me_Constant)

Initial Critical Radius He(I) =
* Regenerated Radius _He

Adjusted Critical Radius He(I) =
* Initial Critical Radlus He(I)
END IF

Gradient N2 Bubble Formation =

((2 O*Surface Ten51on Gamma *

(Skin Compre551on GammaC - Surface Tension Gamma)) /
(Initial Critical Radius N2 (I) *Skin _Compression GammacC))

IF (Compartment Gradient Pascals .GT.

* Gradient N2 Bubble Formation) THEN
New Critical Radius N2 = ((2.0*Surface Tension Gamma*
(Skin Compre551on GammaC - Surface Tension Gamma))) /

(Compartment Gradient Pascals*Skin Compression GammacC)

Adjusted Critical Radius N2 (I) =

* Initial Critical Radlus N2()+
* (In1t1a1 Critical _Radius N2(I)-
* New Critical Radius _N2) *
* EXP (-Time at Altitude Before Dive/
* Regeneration Time Constant)
Initial Critical_ Radius_N2(I) =
* Adjusted Critical Radius N2 (I)
ELSE
Ending Radius N2 = 1.0/ (Compartment Gradient Pascals/
(2. O*(Surface Tension Gamma-Skin Compression GammacC))
+ 1.0/Initial Critical _Radius N2(I))
Regenerated Radius N2 =
* Initial Critical Radlus _N2(I) +
* (Endlng Radius N2 - Initial Critical Radius N2 (I)) *
* EXP (-Time at Altltude Before _Dive/
* Regenerat1on_T1me_Constant)
Initial Critical Radius N2(I) =
* Regenerated Radius _N2
Adjusted Critical Radius N2 (I) =
* Initial Critical Radlus N2()
END IF
END DO
Inspired Nitrogen Pressure = (Barometric Pressure -
* Water Vapor Pressure)*0.79
DO I = 1,16
Initial Nitrogen Pressure = Nitrogen Pressure(I)
Nitrogen Pressure(I) = HALDANE EQUATION
* (Initial Nitrogen Pressure, Inspired Nitrogen Pressure,
* Nitrogen Time Constant (I), Time at Altitude Before Dive)
END DO
END IF
CLOSE (UNIT = 12, STATUS = 'KEEP')
RETURN

FORMAT STATEMENTS - PROGRAM OUTPUT

59

Varying Permeability Model (VPM) Decompression Program in Fortran

02 FORMAT ('OALTITUDE = ',61X,F7.1,4X, 'BAROMETRIC PRESSURE = ',

C
8
*F6.3)

C

C

C

900 FORMAT ('OERROR!
901 FORMAT (' ')

902 FORMAT ('OERROR!

ALTITUDE OF DIVE HIGHER THAN MOUNT EVEREST')

DIVER ACCLIMATIZED AT ALTITUDE',

*1X, '"MUST BE YES OR NO')

903 FORMAT ('OERROR! STARTING ACCLIMATIZED ALTITUDE MUST BE LESS',

*1X, 'THAN ALTITUDE OF DIVE')
904 FORMAT (' AND GREATER THAN OR EQUAL TO ZERO')
@
C END OF SUBROUTINE
@SS

END
@S
cC SUBROUTINE CLOCK
C Purpose: This subprogram retrieves clock information from the Microsoft
C operating system so that date and time stamp can be included on program
c output.
@

SUBROUTINE CLOCK (Year, Month, Day, Clock Hour, Minute, M)

IMPLICIT NONE
@S
c ARGUMENTS
@S

CHARACTER M*1 loutput

INTEGER*2 Month, Day, Year loutput

INTEGER*2 Minute, Clock Hour loutput
@
C LOCAL VARIABLES
@S

INTEGER*2 Hour, Second, Hundredth
@
c CALCULATIONS
@S

CALL GETDAT (Year, Month, Day) IMicrosoft run-time

CALL GETTIM (Hour, Minute, Second, Hundredth) I'subroutines

IF (Hour .GT. 12) THEN

Clock Hour = Hour - 12
M = IEI
ELSE
Clock Hour = Hour
M= 'a’

ENDIF
@S
C END OF SUBROUTINE
@SS

RETURN

END

60

