Example Fortran Code and Explanation
for a Dissolved Gas Decompression Calculation Program

Presented by Erik C. Baker, P.E.

Note: The following FORTRAN code represents a complete and functional
decompression calculation program. The purpose here is to show the basic
procedures involved in decompression calculations. There are many other
parameters usually involved in a typical desktop program such as oxygen
toxicity calculations, gas consumption calculations, equivalent narcotic
depth, etc. However, since those are separate topics from decompression
calculations, they are not included in this program example.

VERY IMPORTANT NOTE: The decompression program must calculate the entire dive
and decompression profile in the SAME system of pressure units. This will be
either the American System of Pressure Units (feet of seawater, fsw) or the
European System of Pressure Units (meters of seawater, msw) [see separate
explanation about Pressure Units]. DO NOT MIX UNITS of different systems in
the same program! DO NOT ATTEMPT TO CONVERT BETWEEN UNITS of different
systems in the same program! The standard convention in decompression
calculations is to calculate all pressures in the same units that are used for
depth pressure (i.e. fsw or msw). DO NOT MIX UNITS like atm/ATA with fsw or
bar with msw. Keep in mind that most of the pressures and partial pressures
will be in terms of absolute pressure and NOT depth pressure. The depth
pressures will be converted to absolute pressures to perform most of the
calculation sequences.

The character variables in the main program and subroutines are:

COMAND A command to be passed to the MS-DOS operating system.
LINEL A one line description of the dive.
WORD Either the word “ascent” or “descent” depending on the profile.

The integer variables in the main program and subroutines are:

MIXNUM The number of the gas mix (used to address array elements with
fractions of the various gases in each mix) .

NUMMIX The total number of gas mixes to be used on this dive.

PROFIL The profile code used to identify ascent/descent or constant

depth segments of the dive. A profile code of 99 will
invoke the decompression sequence.

SEGNUM The segment number. The complete dive is broken down into
discrete segments of ascent/descent profiles and constant depth
profiles.

TEMPSG Temporary variable used to update segment number.

The real number variables in the main program and subroutines are:

AHE BGhlmann Coefficient “a” (intercept) for helium (array variable
with 16 elements) .

AHEN2 BGhlmann Coefficient “a” (intercept) for both helium and nitrogen
(array variable with 16 elements) .

AN2 BGhlmann Coefficient “a” (intercept) for nitrogen (array variable
with 16 elements) .

BHE Bihlmann Coefficient “b” (slope) for helium (array variable with
16 elements) .

BHEN2 BGhlmann Coefficient “b” (slope) for both helium and nitrogen
(array variable with 16 elements) .

BN2 Bihlmann Coefficient “b” (slope) for nitrogen (array variable with
16 elements) .

CEILNG The deco ceiling (in depth pressure). This the shallowest
depth for safe ascent without requiring a decompression stop.

CHANGE A depth pressure where a change in one of the decompression

parameters will take place.

CKSUM Check sum used to verify correct gas fractions in gas mixes.

COUNT Counter variable used to compute segment time on deco stops.

DECORT Deco run time.

DEPTH Depth pressure.

FACTOR The Gradient Factor.

FCTRHI The Hi Gradient Factor.

FCTRLO The Lo Gradient Factor.

FCTRSL The slope parameter in a linear function which determines the
change in Gradient Factor with change in deco stop depth.

FDEPTH Final depth pressure.

FHE Fraction of helium (array variable).

FN2 Fraction of nitrogen (array variable).

FO2 Fraction of oxygen (array variable).

FPAMB Final ambient pressure, absolute.

FSUM Sum of the fractions of the gases in a gas mix.

HALFTH Half-time for helium (array variable with 16 elements).

HALFTN Half-time for nitrogen (array variable with 16 elements).

HERATE Rate of change in inspired helium pressure.

KHE Time constant for helium (array variable with 16 elements).

KN2 Time constant for nitrogen (array variable with 16 elements) .

MVALUE BGhlmann M-value in absolute pressure (array variable with 16
elements) .

N2RATE Rate of change in inspired nitrogen pressure.

NXSTOP The depth pressure of the next deco stop.

O2DECO Oxygen deco factor.

PAMB Ambient pressure, absolute.

PAMBT Tolerated ambient pressure, absolute (array variable with 16
elements) .

PERCMV Percent M-value (array variable with 16 elements).

PHE Partial pressure of helium, absolute (array variable with 16
elements) .

PHEN2 Partial pressure of both helium and nitrogen, absolute (array
variable with 16 elements).

PHEO Initial partial pressure of helium, absolute (array variable with
16 elements) .

PH20 Water vapor pressure, absolute.

PIHE Inspired partial pressure of helium, absolute.

PIHEO Initial inspired partial pressure of helium, absolute.

PIN2 Inspired partial pressure of nitrogen, absolute.

PIN20 Initial inspired partial pressure of nitrogen, absolute.

PMVMAX Maximum Percent M-value across all 16 compartments.

PN2 Partial pressure of nitrogen, absolute (array variable with 16
elements) .

PN20 Initial partial pressure of nitrogen, absolute (array variable
with 16 elements) .

RATE Rate of ascent (negative value) or descent (positive wvalue).

ROUND Temporary variable used to round up run time to whole minute.

RTIME Run time.

SAFEAD Safe ascent depth pressure (array variable with 16 elements).

SDEPTH Starting depth pressure.

SGTIME Segment time.

SPAMB Starting ambient pressure, absolute.

SRTIME Run time at the end of a segment.

STEPSZ Step size between decompression stops (depth pressure increments) .

STOPD Depth pressure of decompression stop.

STOPGF The Gradient Factor used to determine a particular deco stop.

STOPT Stop time.

TEMP1 Temporary variable.

TEMP2 Temporary variable.

TEMPRT Temporary variable used to update run time.

TEMPST Temporary variable used to update segment time.

TRIALD Trial depth pressure.

DESCRIPTION OF THE MAIN PROGRAM

As with any program, the first step is to identify the program and declare the
variable types:

PROGRAM DECOCALC
c Bihlmann 16 COMPARTMENTS, ZH-L16B M-VALUES (ZH-L16A He, ZH-L16B N2)

CHARACTER COMAND*3, WORD*7, LINE1*70

INTEGER NUMMIX, PROFIL, SEGNUM, MIXNUM

REAL RTIME, PAMB, PH20, FACTOR, CEILNG, STOPD, STEPSZ

REAL FO2, FHE, FN2, FSUM, CKSUM, CHANGE, PMVMAX, SGTIME

REAL PHE, PN2, HALFTH, HALFTN, KHE, KN2, FCTRHI, FCTRLO, FCTRSL
REAL DEPTH, FDEPTH, SDEPTH, RATE, SRTIME, DECORT, STOPT

REAL O2DECO, TEMP1l, TEMP2, NXSTOP, STOPGF, TRIALD

Next, the decompression program will make extensive use of one-dimensional
arrays (subscripted variables) to do the calculations. The arrays are
dimensioned (i.e. number of array elements) below. Note that most of the
arrays will be dimensioned to sixteen (16) elements to correlate with the 16
half-time compartments in the BUGhlmann decompression model. The fractions of
oxygen (FO2), helium (FHE), and nitrogen (FN2) are dimensioned to the number
of different gas mixes permitted for use in the program (in this case 10).

DIMENSION FO2(10), FHE(10), FN2(10), PHE(16), PN2(16)
DIMENSION HALFTH(16), HALFTN(1l6), KHE(1l6), KN2(16)

For greatest computing efficiency, many of the variables will be common to
both the main program and several subroutines (sub-programs). These common
variables (and arrays) are declared below. Note that in FORTRAN, the common
variables and arrays are organized into lettered COMMON BLOCKS.

COMMON /A/ FHE, KHE, KN2, PH20, /B/ RTIME, SEGNUM, FN2, SGTIME
COMMON /B/ MIXNUM, /C/ PHE, PN2, /D/ PAMB, /F/ FACTOR, /J/ O2DECO

Next, the wvalues for the sixteen (16) Bihlmann half-times (in minutes) are
assigned to the subscripted elements in the arrays for the helium half-times
(HALFTH) and the nitrogen half-times (HALFTN). In FORTRAN, this is
accomplished with the DATA statement. Note that the first array elements are
using BUhlmann's half-times for Compartment No. 1b (i.e. helium half-time =
1.88 min, nitrogen half-time = 5.0 min). The reason for this is that the 5
minute compartment for nitrogen is consistent with most other decompression
models and, typically, the 4 minute half-time for nitrogen is too fast for
most technical diving applications. Also note that these half-times will be
the same regardless of whether the program is calculating in the American
System of Pressure Units (feet of seawater, fsw) or the European System of
Pressure Units (meters of seawater, msw) . [see separate explanation about
Pressure Units].

DATA HALFTH(1)/1.88/,HALFTH(2)/3.02/,HALFTH(3)/4.72/,
* HALFTH(4) /6.99/,HALFTH(5) /10.21/,HALFTH(6) /14.48/,
* HALFTH(7)/20.53/,HALFTH(8) /29.11/,HALFTH(9) /41.20/,
* HALFTH(10) /55.19/,HALFTH(11) /70.69/,HALFTH(12) /90.34/,
* HALFTH (13) /115.29/,HALFTH(14) /147.42/,HALFTH(15) /188.24/,
* HALFTH (16) /240.03/
DATA HALFTN(1)/5.0/,HALFTN(2)/8.0/,HALFTN(3)/12.5/,
* HALFTN (4) /18.5/,HALFTN(5) /27.0/,HALFTN(6) /38.3/,
* HALFTN(7)/54.3/,HALFTN(8) /77.0/,HALFTN(9) /109.0/,
* HALFTN (10) /146.0/,HALFTN(11) /187.0/,HALFTN (12) /239.0/,
* HALFTN (13) /305.0/,HALFTN (14) /390.0/,HALFTN (15) /498.0/,
* HALFTN (16) /635.0/
Other variables must be initialized as well. First, the water vapor pressure

(PH20) , absolute, is assigned a value. This value will be expressed in either
fsw or msw, depending on which system of pressure units (American or European)

the program is calculating in. The value to be used will depend on the
respiratory quotient (Rqg) that was used in the Alveolar Ventilation Equation
[see separate explanation about Water Vapor Pressure, Respiratory Quotient,
and Alveolar Gas Adjustment].

PH20
PH20

1.848 [fsw, Rqg
0.567 [msw, Rqg

0.9] or
0.9]

The run time and segment number are initialized to zero.

RTIME = 0.0
SEGNUM = 0

Next is an important step. The time constants, k for helium (KHE) and k for
nitrogen (KN2) will be computed for each compartment and the values are
assigned into subscripted array elements. The time constant for each
compartment is the natural logarithm of 2 divided by the half-time. After
this, half-times will no longer be used in any of the gas loading
calculations! All of the gas loading calculations will be based on the time
constants, k, for each of the compartments for helium and nitrogen. This step
is accomplished with a program loop (a DO loop in FORTRAN) .

DO 10 I = 1,16
KHE(I) = ALOG(2.0)/HALFTH(I)
KN2 (I) ALOG(2.0) /HALFTN(I)

[

10 CONTINUE

The initial wvalues for the partial pressure of helium (PHE) and the partial
pressure of nitrogen (PN2) must be assigned for each compartment. In this
case, the program is set up for diving at sea level (not a dive at altitude)
and it is for a first dive (not a repetitive dive). Therefore, the initial
partial pressure for helium will be zero in all compartments (since the diver
has been breathing air at the surface) and the initial partial pressure for
nitrogen will be the “saturation” value due to breathing air at the surface
for a long time. This “saturation” wvalue is computed as follows:

PHE = (Pamb - PH20) *FHEair and PN2 = (Pamb - PH20) *FN2air, where Pamb is the
absolute ambient pressure, PH20 is the water vapor pressure, and Fair is the
fraction of inert gas (helium or nitrogen) in atmospheric air. In the
American System, the absolute ambient pressure at sea level is 33 fsw, in the
European System it is 10 msw [see separate explanation about Pressure Units].
VERY IMPORTANT NOTE: In decompression calculations, all partial pressures are
calculated in values of ABSOLUTE PRESSURE! They are NOT calculated in the
values of depth pressure! Since the fraction of helium in atmospheric air is
zero, the initial value for PHE will be zero. The fraction of nitrogen in

atmospheric air is 79%. For initial PN2 in the American System,
PN2 = (33 fsw - 1.848 fsw)*0.79 = 24.61 fsw [absolute]. For the European
System, PN2 = (10 msw - 0.567 fsw)*0.79 = 7.452 msw [absolute]. Again, the

values are assigned using a program loop:

DO 11 I = 1,16
PHE(I) = 0.00
PN2(I) = 24.61 [fsw] or
PN2 (I) = 7.452 [msw]
11 CONTINUE

The next portion of code tells the program where to get the input data from.
Of course this will depend on what type of computer is being used (desktop
versus in-water dive computer, etc.) and what operating system environment it
is running in (mainframe, MS-DOS, Windows, etc.). In this case, it is a very
simple feed-thru program running in a 32-bit extended MS-DOS or MS-Windows
environment. The input data is located in an input file, DECOCALC.IN, in the
same directory. The output data is written to an output file, DECOCALC.OUT,
in the same directory. Some of the command lines are unique to the Microsoft
FORTRAN Development System.

COMAND = 'CLS'
CALL SYSTEMQQ (COMAND)

PRINT *,"' !

PRINT *, 'PROGRAM DECOCALC'

PRINT *,' !

OPEN (UNIT = 7, FILE = 'DECOCALC.IN', STATUS = 'UNKNOWN',
* ACCESS = 'SEQUENTIAL', FORM = 'FORMATTED')

OPEN (UNIT = 8, FILE = 'DECOCALC.OUT', STATUS = 'UNKNOWN',
* ACCESS = 'SEQUENTIAL', FORM = 'FORMATTED')

The program can now read in data including any descriptive information about
the dive to be calculated. This description along with a heading is written
to the output file.

READ (7,801) LINEl
WRITE (8,802

)
WRITE (8,800)
WRITE (8,803) LINE1l
WRITE (8,800)

Now the program must read in the data - first to calculate the dive profile,
and then the decompression profile. In this case, all of the input data is
pre-formatted within the input file. The first series of data is the number
of gas mixes (NUMMIX) being used on the dive and the fractions of oxygen
(FO2), helium (FHE), and nitrogen (FN2) for each gas mix. The program reads
these into subscripted array elements and then checks to make sure that all of
the gas fractions add up to 100%. This is accomplished with a program loop.

READ (7,*) NUMMIX
DO 45 I = 1, NUMMIX
READ (7,*) FO2(I), FHE(I), FN2(I)
FSUM = FO2(I) + FHE(I) + FN2(I)
CKSUM = FSUM
IF (CKSUM .NE. 1.0) THEN
CALL SYSTEMQQ (COMAND)
PRINT *,"' !
PRINT *, 'ERROR IN INPUT FILE (GASMIX DATA) - PROGRAM TERM
*INATED'
PRINT *,"' !
GOTO 350
END IF
45 CONTINUE

The gas mix data is then written to the output file using a program loop.

WRITE (8,810)
DO 55 J = 1, NUMMIX
WRITE (8,811) J, FO2(J), FHE(J), FN2(J)
55 CONTINUE

Some decompression modelers do not believe that high oxygen mixes (80%-100%)
provide full benefit from an off-gassing standpoint. An oxygen deco factor
(O2DECO) may be employed which acts to increase the fraction of nitrogen used
in the gas loading calculations. This value is now read into the program and
written to the output file. The heading for the dive profile portion of the
dive is also written to the output file as well.

READ (7,*) O2DECO
WRITE (8,800)

WRITE (8,812) O2DECO
WRITE (8,800)

WRITE (8,820)

WRITE (8,800)

WRITE (8,821)

WRITE (8,822)

WRITE (8,823)
WRITE (8,824)

Next, the program reads in the dive profile data. This is where a lot of
variation will come into play depending on the type of computer, operating
environment, etc. In a commercial desktop program such as Abyss or Voyager,
the dive profile can be entered with a mouse as “waypoints” on a graphics
screen. For an in-water dive computer, the data will come from pressure
transducers and other sensors in the housing (or remote tank unit). In this
program, the input file data is set up as a series of dive “segments” which
are similar to “waypoints.” Each segment will be either an ascent/descent or
a constant depth profile. For example: Segment No. 1 - descent from surface
to a depth of 100 fsw at a rate of 60 fsw/min using Gas Mix No. 1. Segment
No. 2 - constant depth at 100 fsw for 20 minutes using Gas Mix No. 1. Segment
No. 3 - ascent from 100 fsw to 60 fsw at a rate of -20 fsw/min using Gas Mix
No. 2 . . . and so on. The entire dive profile is constructed of these
individual segments in any combination of ascent/descent or constant depth
profiles. An ascent/descent segment is identified with a profile code
(PROFIL) = 1 and a constant depth segment is identified with a profile code =
2. When it is time to decompress to the surface, the profile code = 99. The
main purpose of this part of the program is to track (compute) the gas
loadings (i.e. PHE and PN2) in each of the compartments during the dive. To
do this for an ascent/descent segment, the following minimum data is required:
starting depth (SDEPTH), final depth (FDEPTH), rate of ascent/descent (RATE),
and the number of the gas mix (MIXNUM) [which is used to address the array
elements containing the fractions of helium and nitrogen for that gas mix].
For a constant depth segment, the following minimum data is required: depth
(DEPTH) , time at this depth which can be given as the segment time (SGTIME) or
as the run time at the end of the segment (SRTIME), and the number of the gas
mix (MIXNUM). The gas loading calculations for each segment are performed in
separate subroutines depending on whether it is an ascent/descent segment
(subroutine ASCDEC) or a constant depth segment (subroutine CDEPTH) [see
separate explanation about Gas Loading Calculations and Schreiner Equation].
The subroutines are invoked with the CALL statement in FORTRAN. The use of
subroutines makes the program run very fast and efficiently. The following
program sequence uses an IF-THEN-ELSE structured block in a GOTO loop (Line
100) . The program escapes from this sequence when it encounters a profile
code = 99 which then sends it to Line 200, the start of the decompression
sequence. After each ascent/descent or constant depth segment, summary data
is written to the output file.

100 CONTINUE
READ (7,*) PROFIL
IF (PROFIL .EQ. 1) THEN
READ (7,*) SDEPTH, FDEPTH, RATE, MIXNUM
CALL ASCDEC (SDEPTH, FDEPTH, RATE)
IF (FDEPTH .GT. SDEPTH) THEN
WORD = 'Descent'
ELSE IF (SDEPTH .GT. FDEPTH) THEN
WORD = 'Ascent '
ELSE
WORD = 'ERROR'
END IF
WRITE (8,830) SEGNUM, SGTIME, RTIME, MIXNUM, WORD, SDEPTH,
* FDEPTH, RATE
ELSE IF (PROFIL .EQ. 2) THEN
READ (7,*) DEPTH, SRTIME, MIXNUM
CALL CDEPTH (DEPTH, SRTIME)
WRITE (8,831) SEGNUM, SGTIME, RTIME, MIXNUM, DEPTH
ELSE IF (PROFIL .EQ. 99) THEN

GOTO 200
ELSE
CALL SYSTEMQQ (COMAND)
PRINT *,"' !
PRINT *, 'ERROR IN INPUT FILE (PROFILE CODE) - PROGRAM TERMINA

*TED'

PRINT *,"' !
GOTO 350
END IF
GOTO 100

The subroutines for gas loading calculations are separate subprograms located
after the end of the main program. They are explained separately after this
explanation of the main program.

All segments of the dive profile have been completed and it is now time to
begin the decompression sequence (profile code = 99). This is where things
can get very complicated in a decompression program. Several reasons and
considerations for this are as follows:

1. This particular program assumes that the user (basically only myself) is
very knowledgeable about decompression and diving and won't exceed any
deco limits DURING the dive profile. Usually, this will not be a
problem unless an ascent is made during the dive profile such as during
a MULTI-LEVEL dive. If this is the case, then the program will need to
compare the gas loadings against the M-values (i.e. verify the deco
ceiling) before any ascent is made, especially after a switch in the gas
mix.

2. Every decompression program must have some methodology for conservatism
to account for individual variations in physiology and tolerances to
decompression diving. Generally, people who are overweight and/or in
poor physical conditioning will require a substantial conservatism
factor. The popular methodologies for conservatism include increasing
the gas fractions used in the calculations, applying a depth safety
factor which calculates for a deeper-than-actual dive depth [this is the
method that BUhlmann prescribes in his books], calculating for a longer-
than-actual bottom time, and adjusting the half-times to be asymmetrical
(slower) during off-gassing. In the course of my analyses and research
into decompression, I have found the above methodologies to be
problematic in a number of areas including inconsistent conservatism
results (on a Percent M-value basis) between short/shallow dives and
long/deep dives. Furthermore, these methodologies do not take into
account the current knowledge from bubble mechanics. This is why I
developed the Gradient Factor method for conservatism [see my article on
“Deep Stops”]. Regardless of what conservatism method is used, it will
make the decompression programming somewhat more complicated.

3. The behavior of the gas loadings is NOT intuitive! The uptake and
elimination of inert gases (gas loadings) are described by exponential
polynomial equations. Sometimes this produces very unexpected results
(particularly when both helium and nitrogen are involved). You CANNOT
make any assumptions about when a profile is “safe” or not. The program
must incorporate a consistent means of “checking” the profile to ensure
that the M-values (or M-values modified by conservatism factors) are
never exceeded. Take for example an extreme bounce dive. Even 1f the
bottom time is short, it is quite possible that most compartments will
continue to ON-GAS DURING THE ASCENT from the bottom! This means that
the program must be able to halt the ascent anytime it approaches a deco
ceiling (i.e. leading compartment gas loading approaches an M-value) .

4. There are a number of ways to program the decompression sequence to be
“failsafe.” A more complicated way (but at the same time much more
flexible) is through the use of “projection subroutines.” These are

several separate subroutines which “project” what the gas loadings (and
other parameters) will be at a future point in time (the common
variables in the program are NOT updated in these subroutines). These
can be very useful (and fast) for finding critical points in the
decompression profile such as the crossing of the ambient pressure line,
the deepest possible stop depth, and the first stop that will not exceed

an M-value (or modified M-value). This is particularly applicable when
two or more inert gases are in use such as helium and nitrogen. The
problem with “projection subroutines” is that they are tedious and
complicated to program and require a few hundred lines of additional
code. For the purposes of this presentation, I will not explain this
option further.

5. It is NOT possible to directly determine a “NO-STOP TIME” if more than
one inert gas is involved. I realize that BUhlmann presents a formula
for this in his book (which is the Haldane equation rearranged), but
that is for one inert gas ONLY. When two or more inert gases (i.e.
helium and nitrogen) are in the compartments, then two sets of
exponential polynomial equations are involved and there are an infinite
number of solutions for the “NO-STOP TIME” [i.e. it is IMPOSSIBLE to
solve directly!]. This means that the power of the computer must be
employed to verify the decompression requirement all the way back to the
surface. With a desktop program, a separate decompression profile must
be calculated for each dive profile (including each different
combination of deco mixes). Currently, there is no in-water
decompression computer, commercially available, with the
battery/processor power to do such calculations in real-time.

6. The most common method of keeping the decompression situation under
control during ascent is to proceed in small increments or STEP SIZES.
Usually these are the standard stop depth increments of 10 fsw or 3 msw.
Also, the convention is to clear the M-values for the NEXT stop depth
BEFORE YOU LEAVE the present stop depth. Mathematically, there are a
couple ways to accomplish this. One method is to “shift” the M-values
deeper by one stop depth (or STEP SIZE) such as is done in the DCAP
program. The more common method is the “LOOK AHEAD” method which I will
present here.

The Decompression Sequence:

The first step is to input the data pertaining to the decompression sequence.
In some programs this will already be accomplished with initialization files,
default menus, or similar means. In this “feed-thru” program, the data is
read from the input file starting after Line 200. The pertinent data is the
present or starting depth (SDEPTH), the number of the gas mix (MIXNUM), the
rate to be used during the ascent (RATE), and the increment or step size
(STEPSZ) to be used between deco stops. In most programs, the step size will
be fixed to the standard 10 fsw or 3 msw. This is the safest policy unless
the program is equipped with “projection subroutines” to deal with the strange
happenings that can result from “big” step sizes. The next two parameters are
the Hi Gradient Factor (FCTRHI) and the Lo Gradient Factor (FCTRLO) which are
used in the Gradient Factor Method for conservatism [which is included as an
option in this presentation]. Finally, the depth (CHANGE) at which a change
in any of the decompression parameters will take place is read-in. Basically,
a change in the gas mix, ascent rate, or step size can take place at any pre-
determined deco stop.

200 CONTINUE
READ (7,*) SDEPTH
READ (7,*) MIXNUM, RATE, STEPSZ, FCTRHI, FCTRLO
READ (7,*) CHANGE

The heading for the decompression profile portion of the dive is written to
the output file. The deco run time variable is initialized to zero.

WRITE (8,800)
WRITE (8,840)
WRITE (8,800)
WRITE (8,841)
WRITE (8,842)
WRITE (8,843)

WRITE (8,844)
DECORT = 0.0

Optional: the current Gradient Factor (FACTOR) is set to the Lo Gradient
Factor to introduce the first “deep stop” [see my article on “Deep Stops”].

FACTOR = FCTRLO

The next part of the decompression sequence is the most difficult since there
are several different ways to approach the problem. This is where the
PHILOSOPHY of the decompression programmer comes into play. What I mean by
this is that the programmer must make certain decisions about what this
program is being used for, what kind of divers will be using the program, and
whether the decompression programming sequence will be either complicated yet
flexible or straightforward but not-very-flexible. The crux of the problem is
determining what the current “deco ceiling” is BASED ON THE PRESENT GAS
LOADING and then proceeding with the ascent WHILE MAKING SURE THAT AN M-VALUE
(OR MODIFIED M-VALUE) WILL NOT BE EXCEEDED during the ascent. Again, this
gets back to the fact that the behavior of the gas loadings is determined by
exponential polynomial equations (NOT intuitive!). Under certain scenarios,
such as a deep bounce dive, there is a distinct possibility that the deco
ceiling (safe ascent depth) calculated at the end of the bottom time will
change (become deeper) during the ascent from the bottom. This is because the
compartments can ON-GAS DURING THE ASCENT in certain instances (bounce dive,
change in gas mixes, etc). So, the question is how to build in safeguards
against this problem. The more complicated (yet flexible) approach is through
the use of “projection subroutines” which predict what the future conditions
will be. The more straightforward (yet inflexible) approach is to proceed
with the ascent in small increments (step sizes) and check the deco ceiling
status at each step. We will proceed with the latter approach here in what is
known as the “LOOK AHEAD” method.

The Trial Depth Ascent Process:

The first step is to determine a TRIAL DEPTH for ascent. In keeping with the
cautious approach of ascending in small increments, we will select the first
trial depth (TRIALD) to be the next shallower standard stop depth above our
present or starting bottom depth (SDEPTH). To compute this, we take SDEPTH
and “truncate” it to the next shallower standard stop depth. In the American
System, fsw, this will be based on a standard increment of 10 fsw:

TEMP1 = (SDEPTH/10.0) - 0.5
TRIALD = AINT(TEMP1l) * 10.0

In the European System, msw, this will be based on a standard increment of 3
msw:

TEMP1 = (SDEPTH/3.0) - 0.5
TRIALD = AINT(TEMP1l) * 3.0

The trial depth (TRIALD) should now be checked to make sure that it is not
less than zero (the surface).

TEMP2 = TRIALD
IF (TEMP2 .LE. 0.0) THEN
TRIALD = 0.0

END IF
Next, we determine what the current deco ceiling is (CEILNG). To do this we
use the subroutine SAFASC (for safe ascent). It is explained separately after

this explanation of the main program.
230 CALL SAFASC (CEILNG)

This has returned the value of the current deco ceiling (CEILNG). The trial

depth (TRIALD) must now be checked to make sure that it is not shallower than
the current deco ceiling. If so, then the present depth becomes a deco stop
depth, the trial depth becomes the next stop, and the program jumps ahead to
the decompression stop sequence.

IF (CEILNG .GT. TRIALD) THEN
STOPD = SDEPTH
NXSTOP = TRIALD
GOTO 240

END IF

If a deco ceiling will not be violated, the profile is then allowed to ascend
to the trial depth (TRIALD). This is done by calling the ascent/descent
subroutine ASCDEC.

CALL ASCDEC (SDEPTH, TRIALD, RATE)
The gas loadings have now been updated as a result of the ascent.

Next, we call the subroutine MVCALC (for M-value calculation) to determine the
maximum Percent M-value (PMVMAX) across all 16 compartments UPON ARRIVAL AT
THE TRIAL DEPTH. This represents a worst-case condition in terms of proximity
to an M-value. This procedure is done as a second safety check in the
process. The maximum Percent M-value is written to the output file for each
segment during the ascent so that the user (the diver) will easily spot any
discrepancy. In addition, this is valuable information for divers who wish to
tailor their profiles according to individual disposition and physiology (i.e.
set personal deco limits on a Percent M-value basis). The Percent M-value
parameter is also used to gauge the effect of various Gradient Factors when
using the Gradient Factor Method for conservatism. The subroutine MVCALC is
explained separately after this explanation of the main program.

CALL MVCALC (PMVMAX)

We now write the pertinent data for the ascent segment to the output file and
check to make sure that we have not arrived at the surface. If we have
arrived at the surface (depth pressure = 0) then we jump to the end of the
program.

IF (TRIALD .EQ. 0.0) THEN
WRITE (8,850) SEGNUM, SGTIME, RTIME, MIXNUM, TRIALD, RATE,

* PMVMAX, FACTOR
GOTO 300
ELSE
WRITE (8,851) SEGNUM, SGTIME, RTIME, MIXNUM, TRIALD, RATE,
* PMVMAX
END IF

Next we check to see if this trial depth is a depth where there is a change in
the decompression parameters. If so, they are read-in.

IF (CHANGE .EQ. TRIALD) THEN
READ (7,*) MIXNUM, RATE, STEPSZ
READ (7,*) CHANGE

END IF

Now we must determine the next trial depth for ascent. The current trial
depth becomes the new starting depth and the next trial depth will be the new
starting depth minus one standard stop depth. We then go back to Line 230 to
start the trial depth ascent process all over again.

SDEPTH = TRIALD

TRIALD = SDEPTH - 10.0 [fsw] or
TRIALD = SDEPTH - 3.0 [msw]
GOTO 230

10

The Decompression Stop Process:

The next part of the decompression sequence involves the process of completing
decompression stops. When the trial depth ascent process encounters a deco
ceiling, the program goes to Line 240. 1In this case, the first few lines
pertain to the use of the Gradient Factor Method for conservatism.

Optional: If the first stop is greater than zero (i.e. below the surface)
then the slope for the change in Gradient Factor with change in stop depth is
calculated [see my article on “Deep Stops”].

240 IF (STOPD .GT. 0.0) THEN
FCTRSL = (FCTRHI - FCTRLO)/ (0.0 - STOPD)
END IF

Optional: the Gradient Factor used to determine the current deco stop is
assigned to STOPGF and the Gradient Factor for the next stop is calculated.

250 STOPGF
FACTOR

FACTOR
NXSTOP*FCTRSL + FCTRHI

Next, we determine how much time is required at the present deco stop in order
to safely ascend to the NEXT STOP without violating a deco ceiling. This is
the basis of the “LOOK AHEAD” method. To do this we use the subroutine DSTOP
(for deco stop). It is explained separately after this explanation of the
main program. Note that the gas loadings for the deco stop (constant depth
profile) will be updated by the subroutine DSTOP.

CALL DSTOP (STOPD, NXSTOP)

Since the decompression tables produced by this program will be based on run
times (and NOT on stop times), a deco run time variable is employed so that
the stop times (as well as the run times) written to the output file will be
in whole minutes. Each stop time will include the ascent time from the last
stop to the present stop. The only exception to this is the stop time for the
first stop which is rounded up to the nearest whole minute from the segment
time.

IF (DECORT .EQ. 0.0) THEN

STOPT = ANINT (SGTIME + 0.5)
ELSE

STOPT = RTIME - DECORT
END IF

Next, we write the pertinent data for the deco stop to the output file.

WRITE (8,852) SEGNUM, SGTIME, RTIME, MIXNUM, INT (STOPD),
* INT (STOPT), INT(RTIME), STOPGF

Once the program has returned from the deco stop subroutine, we are now clear
to ascend to the next stop. The current stop depth becomes the new starting
depth and the current next stop depth becomes the new stop depth. The deco
run time is set to the current run time.

SDEPTH = STOPD
STOPD = NXSTOP
DECORT = RTIME

The profile then ascends to the new stop depth. This is done by calling the
ascent/descent subroutine ASCDEC.

CALL ASCDEC (SDEPTH, STOPD, RATE)

Next, the absolute ambient pressure in the common block is set for the new
stop depth.

11

PAMB STOPD + 33.0 [fsw] or
PAMB = STOPD + 10.0 [msw]

Now we call the subroutine MVCALC (for M-value calculation) to determine the
maximum Percent M-value (PMVMAX) across all 16 compartments UPON ARRIVAL AT
THE STOP DEPTH. Again, this procedure is done as a second safety check in the
process and it allows divers to evaluate their profiles on a Percent M-value
basis.

CALL MVCALC (PMVMAX)

We now write the pertinent data for the ascent segment to the output file. If
we have arrived at the surface (depth pressure = 0) then we include the
surfacing Gradient Factor in the printout.

IF (STOPD .EQ. 0.0) THEN
WRITE (8,850) SEGNUM, SGTIME, RTIME, MIXNUM, STOPD, RATE,

* PMVMAX, FACTOR
ELSE
WRITE (8,851) SEGNUM, SGTIME, RTIME, MIXNUM, STOPD, RATE,
* PMVMAX
END IF

Next, we check to make sure that we have not arrived at the surface. If we
have arrived at the surface (depth pressure = 0) then we jump to the end of
the program.

IF (STOPD .EQ. 0.0) THEN
GOTO 300
END IF

Then we check to see if this stop depth is a depth where there is a change in
the decompression parameters. If so, they are read-in.

IF (CHANGE .EQ. STOPD) THEN
READ (7,*) MIXNUM, RATE, STEPSZ
READ (7,*) CHANGE

END IF

Finally, we check to make sure that present step size setting will not make
the next stop shallower than the surface and then we set the next stop depth
based on the step size. We then go back to Line 250 to start the
decompression stop process all over again.

IF (STOPD - STEPSZ .LT. 0.0) THEN
NXSTOP = 0.0
ELSE
NXSTOP
END IF
GOTO 250

STOPD - STEPSZ

The last several lines of the main program include writing a message to the
screen indicating that the program calculations are complete, closing the
input and output files, and numerous FORMAT statements for all read and write
statements.

300 CONTINUE
WRITE (*,800)
WRITE (*,860)
WRITE (*,861)
WRITE (*,800)
350 CONTINUE
CLOSE (UNIT = 7, STATUS 'KEEP')
CLOSE (UNIT = 8, STATUS = 'KEEP')
800 FORMAT (' ')

12

[not all FORMAT statements are shown here - see full program code]
861 FORMAT ('OOutput data is located in the file DECOCALC.OUT')
END

[END OF MAIN PROGRAM DESCRIPTION]
DESCRIPTION OF SUBROUTINES FOR GAS LOADING CALCULATIONS

First is the subroutine for ascent/descent segments (Subroutine ASCDEC) which
uses the Schreiner equation for exponential gas loading [see separate
explanation about Gas Loading Calculations and Schreiner Equation].

SUBROUTINE ASCDEC (SDEPTH, FDEPTH, RATE)
As in the main program, variables and arrays are declared.

INTEGER MIXNUM, TEMPSG, SEGNUM

REAL FHE, FN2, KHE, KN2, PHEO, PN20, PHE, PN2, PH20

REAL FDEPTH, SDEPTH, PIHEO, PIN20O, RATE, RTIME, SGTIME, TEMPRT
REAL HERATE, N2RATE, SPAMB, PAMB, FPAMB

DIMENSION FHE (10), FN2(10), KHE(le), KN2(16)

DIMENSION PHEO (16), PN20(16), PHE(1l6), PN2(1l6)

Variables which are common to this subroutine and the main program are
accessed and updated in the lettered COMMON BLOCKS. In this case, we are most
interested in the updates to COMMON BLOCK /C/ which contains the array
variables PHE and PN2. This subroutine will update the gas loadings in each
compartment as a result of the ascent or descent segment.

COMMON /A/ FHE, KHE, KN2, PH20, /B/ RTIME, SEGNUM, FN2, SGTIME
COMMON /B/ MIXNUM, /C/ PHE, PN2, /D/ PAMB

The common variables of segment time (SGTIME), run time (RTIME), and segment
number (SEGNUM) are updated.

SGTIME (FDEPTH - SDEPTH) /RATE
TEMPRT = RTIME

RTIME = TEMPRT + SGTIME
TEMPSG = SEGNUM
SEGNUM = TEMPSG + 1

Next, the depth pressures used as input data must be converted to absolute
pressures for the calculations. This is done by adding the surface barometric
(atmospheric) pressure to the depth pressure. For a dive at sea level, the
surface barometric pressure is 33 fsw (American System) or 10 msw (European
System). The final ambient pressure (FPAMB) of this ascent or descent segment
is the final depth pressure (FDEPTH) plus the surface barometric pressure.

The starting ambient pressure (SPAMB) of this ascent or descent segment is the
starting depth pressure (SDEPTH) plus the surface barometric pressure.

FPAMB FDEPTH + 33.0 [fsw] or
FPAMB = FDEPTH + 10.0 [msw]

SPAMB SDEPTH + 33.0 [Esw] or
SPAMB = SDEPTH + 10.0 [msw]

The absolute ambient pressure in the common block is updated to the final
ambient pressure.

PAMB = FPAMB
The initial inspired partial pressure of helium (PIHEO) is the starting
ambient pressure (absolute) minus the water vapor pressure (absolute) times

the fraction of helium in the present gas mix. The initial inspired partial
pressure of nitrogen (PIN20) is the starting ambient pressure (absolute) minus

13

the water vapor pressure (absolute) times the fraction of nitrogen in the
present gas mix.

PIHEO (SPAMB - PH20) *FHE (MIXNUM)
PIN20 = (SPAMB - PH20) *FN2 (MIXNUM)

The rate of change in inspired helium pressure (HERATE) is simply the ascent
or descent rate times the fraction of helium in the present gas mix. The rate
of change in inspired nitrogen pressure (N2RATE) is simply the ascent or
descent rate times the fraction of nitrogen in the present gas mix. VERY
IMPORTANT: Keep in mind that all rates (RATE, HERATE, N2RATE) must be
positive (+) for descent segments and negative (-) for ascent segments.

HERATE RATE*FHE (MIXNUM)
N2RATE = RATE*FN2 (MIXNUM)

Finally, a program loop is used to update the gas loadings across all 16
compartments in the array variables. The initial partial pressure of helium
(PHEO) is the old (present) partial pressure of helium (PHE) which is about to
get updated. The initial partial pressure of nitrogen (PN20) is the old
(present) partial pressure of nitrogen (PN2) which is about to get updated.
The new (updated) partial pressures for helium and nitrogen (PHE and PN2),
i.e. the gas loadings, are computed using the Schreiner equation:

DO 430 I = 1,16

PHEO (I) = PHE(I)

PN20 (I) = PN2(I)

PHE(I) = PIHEO + HERATE* (SGTIME - 1.0/KHE(I)) -

* (PIHEO - PHEO(I) - HERATE/KHE(I))*EXP (-KHE(I)*SGTIME)

PN2 (I) = PIN20 + N2RATE* (SGTIME - 1.0/KN2(I)) -

* (PIN20 - PN20(I) - N2RATE/KN2 (I))*EXP (-KN2(I)*SGTIME)
430 CONTINUE

RETURN

END [return to main program]

Second is the subroutine for constant depth segments (Subroutine CDEPTH) which
uses the Haldane equation for exponential gas loading [see separate
explanation about Gas Loading Calculations and Schreiner Equation].

SUBROUTINE CDEPTH (DEPTH, SRTIME)
As in the main program, variables and arrays are declared.

INTEGER MIXNUM, TEMPSG, SEGNUM

REAL FHE, FN2, KHE, KN2, PHEO, PN20, PHE, PN2, PH20, SRTIME
REAL DEPTH, FPAMB, PAMB, PIHE, PIN2, RTIME, SGTIME, TEMPRT
DIMENSION FHE (10), FN2(10), KHE(le), KN2(16)

DIMENSION PHEO (16), PN20(16), PHE(1l6), PN2(1l6)

Variables which are common to this subroutine and the main program are
accessed and updated in the lettered COMMON BLOCKS. In this case, we are most
interested in the updates to COMMON BLOCK /C/ which contains the array
variables PHE and PN2. This subroutine will update the gas loadings in each
compartment as a result of the constant depth segment.

COMMON /A/ FHE, KHE, KN2, PH20, /B/ RTIME, SEGNUM, FN2, SGTIME
COMMON /B/ MIXNUM, /C/ PHE, PN2, /D/ PAMB

The common variables of segment time (SGTIME), run time (RTIME), and segment
number (SEGNUM) are updated.

SGTIME SRTIME - RTIME
TEMPRT SRTIME
RTIME = TEMPRT
TEMPSG = SEGNUM

14

SEGNUM = TEMPSG + 1

Next, the depth pressure used as input data must be converted to absolute
pressure for the calculations. This is done by adding the surface barometric
(atmospheric) pressure to the depth pressure. For a dive at sea level, the
surface barometric pressure is 33 fsw (American System) or 10 msw (European
System). The ambient pressure (PAMB) for this constant depth segment is the
depth pressure (DEPTH) plus the surface barometric pressure.

PAMB = DEPTH + 33.0 [fsw] or
PAMB = DEPTH + 10.0 [msw]

The inspired partial pressure of helium (PIHE) is the ambient pressure
(absolute) minus the water vapor pressure (absolute) times the fraction of
helium in the present gas mix. The inspired partial pressure of nitrogen
(PIN2) is the ambient pressure (absolute) minus the water vapor pressure
(absolute) times the fraction of nitrogen in the present gas mix.

PIHE = (PAMB - PH20) *FHE (MIXNUM)
PIN2 = (PAMB - PH20) *FN2 (MIXNUM)

Finally, a program loop is used to update the gas loadings across all 16
compartments in the array variables. The initial partial pressure of helium
(PHEO) is the old (present) partial pressure of helium (PHE) which is about to
get updated. The initial partial pressure of nitrogen (PN20) is the old
(present) partial pressure of nitrogen (PN2) which is about to get updated.
The new (updated)partial pressures for helium and nitrogen (PHE and PN2), i.e.
the gas loadings, are computed using the Haldane equation:

DO 520 I = 1,16

PHEO (I) = PHE(I)

PN20 (I) = PN2(I)

PHE(I) = PHEO(I) + (PIHE - PHEO(I))*

* (1.0 - EXP (-KHE(I)*SGTIME))

PN2 (I) = PN20(I) + (PIN2 - PN20O(I))*

* (1.0 - EXP (-KN2(I)*SGTIME))
520 CONTINUE

RETURN

END [return to main program]

DESCRIPTION OF SUBROUTINE FOR SAFE ASCENT CALCULATION (DECO CEILING)

This subroutine is used to determine the deco ceiling (CEILNG) at any point
during the dive or decompression profile.

SUBROUTINE SAFASC (CEILNG)
As in the main program, variables and arrays are declared.

REAL AHE, BHE, AN2, BN2, AHEN2, BHEN2

REAL PHE, PN2, PHEN2, PAMBT, SAFEAD, FACTOR, CEILNG
DIMENSION AHE (16), BHE(1l6), AN2(1l6), BN2(1l6)
DIMENSION AHEN2 (16), BHEN2(16), PHE(16), PN2(16)
DIMENSION PHEN2 (16), PAMBT(16), SAFEAD(16)

Variables which are common to this subroutine, the main program, and a BLOCK
DATA subprogram are identified in the lettered COMMON BLOCKS. 1In this case,
we will NOT be updating any variables in the COMMON BLOCKS, only using their
values to perform the calculations. The COMMON BLOCK /C/ contains the PRESENT
values for the gas loadings, PHE and PN2. The COMMON BLOCK /E/ contains the
values for the BlUhlmann Coefficients “a” and “b” for helium (AHE and BHE) and
nitrogen (AN2 and BN2) which are used in linear equations to calculate the
tolerated ambient pressures. The Buhlmann Coefficients in COMMON BLOCK /E/

15

are initialized in a BLOCK DATA subprogram (which appears as a separate
subprogram after the end of the main program). The BLOCK DATA subprogram for
the BlUhlmann Coefficients is explained separately in this presentation. The
COMMON BLOCK /F/ contains the PRESENT value for the Gradient Factor (FACTOR)
which is used to calculate with conservatism under the Gradient Factor Method
(optional) .

COMMON /C/ PHE, PN2, /E/ AHE, BHE, AN2, BN2, /F/ FACTOR
Next, the variable for the deco ceiling (CEILNG) is initialized to zero.
CEILNG = 0.0

Finally, a program loop is used to do a series of calculations which produces
the deco ceiling.

THE ESSENCE OF THIS PROCESS IS TO COMPARE THE PRESENT GAS LOADINGS FOR EACH
COMPARTMENT AGAINST THE M-VALUES FOR EACH COMPARTMENT TO DETERMINE THE SAFE
ASCENT DEPTH FOR EACH COMPARTMENT. THIS IS ACCOMPLISHED DIRECTLY BY
REARRANGING THE M-VALUE LINEAR EQUATION AND SOLVING FOR TOLERATED AMBIENT
PRESSURE, WHICH IS THEN CONVERTED TO A SAFE ASCENT DEPTH. THE MAXIMUM SAFE
ASCENT DEPTH ACROSS ALL COMPARTMENTS IS THEN THE DECO CEILING FOR THE PROFILE.

First, this requires the summation of the PRESENT values for the partial
pressures of helium (PHE) and nitrogen (PN2) to give the total partial
pressure of inert gas (PHEN2) present in each compartment. Next, in
accordance with the BlUhlmann algorithm, “intermediate” values (AHEN2 and
BHEN2) for Coefficient “a” (intercept) and Coefficient “b” (slope) are
calculated to account for both helium and nitrogen in the compartments. This
results in an adjustment between the separate M-values (and thus tolerated
ambient pressures) for helium and nitrogen based on the proportions of these
inert gases present in each compartment. These same calculations apply if
only one inert gas is present in the compartments (i.e. you don't need another
subroutine since the “intermediate” Coefficients will default to the values
for either helium or nitrogen). The tolerated ambient pressure, absolute,
(PAMBT) is then calculated for each compartment based on the PRESENT total
inert gas loading (PHEN2) and the PRESENT “intermediate” Coefficients (AHEN2
and BHEN2). Note: the M-value and the tolerated ambient pressure are related
by different forms of the same linear equation where the M-value is expressed
in the v = mx + b form and the tolerated ambient pressure is expressed in the
x = (y - b)/m form. The safe ascent depth (SAFEAD) for each compartment is
calculated by converting the tolerated ambient pressure, absolute, (PAMBT)
back to a depth pressure. This is the tolerated ambient pressure, absolute,
minus the surface barometric pressure, absolute. Keep in mind which system of
pressure units you are working in, American (fsw)or European (msw). The final
step is to find the maximum safe ascent depth or deco ceiling (CEILNG) ACROSS
ALL COMPARTMENTS. This is the final number which determines the actual safe
deco ceiling such that an M-value is not exceeded in ANY compartment BASED ON
THE PRESENT GAS LOADING. The following code sequence calculates with the
straight (unmodified) M-values only (NO conservatism) :

DO 600 I = 1,16
PHEN2 (I) = PHE(I) + PN2(I)
AHEN2 (I) = (PHE(I)*AHE(I) + PN2(I)*AN2(I))/PHEN2 (I)
BHEN2 (I) = (PHE(I)*BHE(I) + PN2(I)*BN2(I))/PHEN2 (I)
PAMBT (I) = (PHEN2(I) - AHEN2(I))*BHEN2(I)
SAFEAD(I) = PAMBT(I) - 33.0 [fsw] or
SAFEAD(I) = PAMBT(I) - 10.0 [msw]
CEILNG = MAX(CEILNG, SAFEAD(I))
600 CONTINUE
RETURN
END [return to main program]
Optional: the following is the same sequence using the Gradient Factor Method

for conservatism [see my article on “Deep Stops”]:

16

DO 600 I = 1,16
PHEN2 (I) = PHE(I) + PN2(I)
AHEN2 (I) = (PHE(I)*AHE(I) + PN2(I)*AN2(I))/PHEN2 (I)
BHEN2 (I) = (PHE(I)*BHE(I) + PN2(I)*BN2(I))/PHEN2 (I)
PAMBT (I) = (PHEN2(I) - AHEN2(I)*FACTOR)/(FACTOR/BHEN2 (I) -
* FACTOR + 1.0)
SAFEAD(I) = PAMBT(I) - 33.0 [fsw] or
SAFEAD(I) = PAMBT(I) - 10.0 [msw]
CEILNG = MAX(CEILNG, SAFEAD(I))
600 CONTINUE
RETURN
END [return to main program]

DESCRIPTION OF SUBROUTINE FOR DECOMPRESSION STOPS
SUBROUTINE DSTOP (STOPD, STEPSZ)
As in the main program, variables and arrays are declared.

INTEGER MIXNUM, TEMPSG, SEGNUM

REAL FHE, FN2, KHE, KN2, PHEO, PN20, PHE, PN2, PH20
REAL STOPD, PAMB, PIHE, PIN2, RTIME, SGTIME, TEMPRT
REAL CEILNG, NXSTOP, ROUND, TEMPST, COUNT, O2DECO
DIMENSION FHE (10), FN2(10), KHE(le), KN2(16)
DIMENSION PHEO (16), PN20(16), PHE(1l6), PN2(1l6)

Variables which are common to this subroutine, the safe ascent subroutine, and
the main program are accessed and/or updated in the lettered COMMON BLOCKS.

In this case, we are most interested in the updates to COMMON BLOCK /C/ which
contains the array variables PHE and PN2. This subroutine will update the gas
loadings in each compartment as a result of the decompression stop.

COMMON /A/ FHE, KHE, KN2, PH20, /B/ RTIME, SEGNUM, FN2, SGTIME
COMMON /B/ MIXNUM, /C/ PHE, PN2, /D/ PAMB, /J/ O2DECO

The next sequence in this subroutine is an area where the PHILOSOPHY of the
decompression programmer comes into play. The programmer must decide whether
the decompression tables will be based on run times or stop times. My
experience with technical diving suggests that it is better (easier for the
diver) to base everything on run times. This means that all deco stops are
rounded up to the nearest whole minute in run time and all ascents between
stops are contained in the “stop time.” The advantage for divers is that they
only need to “track” the run time to know when to leave a stop. There is no
in-water mathematics involved such as adding a stop time to the run time on a
dive watch to know when a stop is finished. Also, in-water bottom timers and
stop watches are usually geared for run time as well. Accordingly, this
subroutine will start out by rounding up to the next whole minute in run time.
The difference will be the initial segment time (stop time) for this deco
stop. After one pass through the gas loading calculations, additional stop
time as required will be added in even one minute increments (so that the run
times will always be in whole numbers). The common variables of segment time
(SGTIME), run time (RTIME), and segment number (SEGNUM) are updated.

TEMPRT = RTIME

ROUND = ANINT (TEMPRT + 0.5)
SGTIME = ROUND - RTIME
RTIME = ROUND

TEMPST = SGTIME

TEMPSG SEGNUM

SEGNUM = TEMPSG + 1

Next, the stop depth pressure must be converted to absolute pressure for the
calculations. This is done by adding the surface barometric (atmospheric)
pressure to the stop depth pressure. For a dive at sea level, the surface

17

barometric pressure is 33 fsw (American System) or 10 msw (European System) .
The ambient pressure (PAMB) for this constant depth segment is the depth
pressure (DEPTH) plus the surface barometric pressure.

PAMB = STOPD + 33.0 [fsw] or
PAMB = STOPD + 10.0 [msw]

The inspired partial pressure of helium (PIHE) is the ambient pressure
(absolute) minus the water vapor pressure (absolute) times the fraction of
helium in the present gas mix. The inspired partial pressure of nitrogen
(PIN2) is the ambient pressure (absolute) minus the water vapor pressure
(absolute) times the fraction of nitrogen in the present gas mix.

PIHE = (PAMB - PH20) *FHE (MIXNUM)
PIN2 = (PAMB - PH20)*FN2 (MIXNUM)

Optional: some decompression modelers do not believe that high oxygen mixes
(80%-100%) provide full benefit from an off-gassing standpoint. An oxygen
deco factor (O2DECO) may be employed which acts to increase the fraction of
nitrogen used in the gas loading calculations.

IF ((FN2 (MIXNUM) .GE. 0.0) .AND. (FN2(MIXNUM) .LE. 0.2)) THEN
PIN2 = (PAMB - PH20)* (1.0 - O2DECO + O2DECO*FN2 (MIXNUM))
END IF

In the final sequence, a program loop is used to update the gas loadings
across all 16 compartments in the array variables. The initial partial
pressure of helium (PHEO) is the old (present) partial pressure of helium
(PHE) which is about to get updated. The initial partial pressure of nitrogen
(PN20) is the old (present) partial pressure of nitrogen (PN2) which is about
to get updated. The new (updated) partial pressures for helium and nitrogen
(PHE and PN2), i.e. the gas loadings, are computed using the Haldane equation
(for a constant depth profile). After the initial pass through this loop, the
subroutine SAFASC is called to determine the updated deco ceiling. If the
current deco ceiling is deeper than the next stop, then an additional minute
is added to the stop time and the process repeats. This GOTO loop will
continue until the gas loadings are reduced enough for the deco ceiling to
clear the next stop. This procedure is the “LOOK AHEAD” method for
decompression calculations. The important fundamental is that the stop time
at this deco stop will accumulate until the gas loadings at this stop are
reduced enough to clear the M-values (or modified M-values) FOR THE NEXT STOP.

700 DO 720 I = 1,16
PHEO (I) = PHE(I)
PN20(I) = PN2(I)
PHE(I) = PHEO(I) + (PIHE - PHEO(I))*
* (1.0 - EXP (-KHE(I)*SGTIME))
PN2 (I) = PN20(I) + (PIN2 - PN20(I))*
* (1.0 - EXP (-KN2(I)*SGTIME))

720 CONTINUE

CALL SAFASC (CEILNG)

IF (CEILNG .GT. NXSTOP) THEN
SGTIME = 1.0
COUNT = TEMPST
TEMPST COUNT + 1.0
TEMPRT = RTIME
RTIME = TEMPRT + 1.0

GOTO 700
END IF
SGTIME = TEMPST
RETURN

END [return to the main program]

DESCRIPTION OF SUBROUTINE FOR M-VALUE CALCULATIONS

18

SUBROUTINE MVCALC (PMVMAX)
As in the main program, variables and arrays are declared.

REAL AHE, BHE, AN2, BN2, AHEN2, BHEN2, PAMB
REAL PHE, PN2, PHEN2, MVALUE, PERCMV, PMVMAX
DIMENSION AHE (16), BHE(1l6), AN2(1l6), BN2(1l6)
DIMENSION AHEN2 (16), BHEN2(16), PHE(16), PN2(16)
DIMENSION PHEN2 (16), MVALUE(16), PERCMV(16)

Variables which are common to this subroutine, the main program, and a BLOCK
DATA subprogram are identified in the lettered COMMON BLOCKS. In this case,
we will NOT be updating any variables in the COMMON BLOCKS, only using their
values to perform the calculations. The COMMON BLOCK /C/ contains the PRESENT
values for the gas loadings, PHE and PN2. The COMMON BLOCK /E/ contains the
values for the BUhlmann Coefficients “a” and “b” for helium (AHE and BHE) and
nitrogen (AN2 and BN2) which are used in linear equations to calculate the M-
values. The BUhlmann Coefficients in COMMON BLOCK /E/ are initialized in a
BLOCK DATA subprogram (which appears as a separate subprogram after the end of
the main program). The BLOCK DATA subprogram for the BUhlmann Coefficients is
explained separately in this presentation.

COMMON /C/ PHE, PN2, /D/ PAMB, /E/ AHE, BHE, AN2, BN2
The maximum Percent M-value variable (PMVMAX) is initialized to zero.
PMVMAX = 0.0

Finally, a program loop is used to do a series of calculations which produces
the maximum Percent M-value across all sixteen (16) compartments. First, this
requires the summation of the PRESENT values for the partial pressures of
helium (PHE) and nitrogen (PN2) to give the total partial pressure of inert
gas (PHEN2) present in each compartment. Next, in accordance with the
BGhlmann algorithm, “intermediate” wvalues (AHEN2 and BHEN2) for Coefficient
“a” (intercept) and Coefficient “b” (slope) are calculated to account for both
helium and nitrogen in the compartments. This results in an adjustment
between the separate M-values for helium and nitrogen based on the proportions
of these inert gases present in each compartment. These same calculations
apply 1f only one inert gas is present in the compartments (i.e. you don't
need another subroutine since the “intermediate” Coefficients will default to

the values for either helium or nitrogen). The M-value (in absolute pressure)
is then calculated for each compartment based on the PRESENT ambient pressure
(absolute) and the PRESENT “intermediate” Coefficients (AHEN2 and BHEN2). The

Percent M-value (PERCMV) for each compartment is calculated by dividing the
PRESENT total partial pressure of inert gas (PHEN2)in each compartment by the
M-value for each compartment. The final step is to find the maximum Percent
M-value (PMVMAX) ACROSS ALL COMPARTMENTS. This is the actual number which
describes the proximity of a profile to the established limits (the Buhlmann
M-values in this case). ©Note that these calculations are referenced to the
straight (unmodified) M-values (i.e. NO conservatism factors are applicable)
because we are comparing the gas loadings against these standard values.

DO 800 I = 1,16

PHEN2 (I) = PHE(I) + PN2(I)

AHEN2 (I) = (PHE(I)*AHE(I) + PN2(I)*AN2(I))/PHEN2 (I)
BHEN2 (I) = (PHE(I)*BHE(I) + PN2(I)*BN2(I))/PHEN2 (I)
MVALUE (I) = PAMB/BHEN2 (I) + AHEN2 (I)

PERCMV (I) = PHEN2 (I)/MVALUE (I)

PMVMAX = MAX (PMVMAX, PERCMV(I))
800 CONTINUE

RETURN

END

DESCRIPTION OF BLOCK DATA SUBPROGRAMS FOR M-VALUE COEFFICIENTS

19

A BLOCK DATA subprogram is used in FORTRAN to initialize the BUhlmann
Coefficients “a” and “b” for helium (AHE and BHE) and nitrogen (AN2 and BN2).
The generic term for these are “M-value coefficients” and they are used in the
linear equations to calculate M-values (and tolerated ambient pressures). The
BUhlmann Coefficient “a” is the intercept at zero ambient pressure (absolute)
and it i1s expressed in the system of pressure units that you are calculating
in [fsw or msw]. Note: Blhlmann published the ZH-L1l6 “a” Coefficients in the
pressure units of BAR. For practical purposes in a decompression program,
these must be converted to the system of pressure units that you are working
in (American, fsw, or European, msw). To convert the “a” Coefficients from
bar to fsw, multiply by 32.5684678. To convert the “a” Coefficients from bar
to msw, multiply by 10. Coefficient “b” is the reciprocal of the slope and it
is dimensionless (i.e. it is the same for all applications). The following
BLOCK DATA subprogram initializes the BUhlmann Coefficients for Compartments
1b thru 16 for the American System of Pressure Units, feet of seawater (fsw).
These are the ZH-L16A Coefficients for helium (AHE and BHE) and the ZH-L16B
Coefficients for nitrogen (AN2 and BN2). The “a” Coefficients (AHE and AN2)
are expressed in feet of seawater, fsw, absolute:

BLOCK DATA COEFFS

REAL AHE, BHE, AN2, BN2

DIMENSION AHE (16), BHE(16), AN2(16), BN2(16)

COMMON /E/ AHE, BHE, AN2, BN2

DATA AHE(1)/52.73/,AHE(2)/45.04/,AHE(3)/38.82/,AHE(4) /34.06/,

* AHE (5) /30.03/,AHE(6) /26.72/,AHE (7) /23.79/,AHE(8) /21.18/,

* AHE (9)/19.38/,AHE(10) /18.06/,AHE(11) /17.37/,AHE (12) /16.90/,

* AHE (13) /16.87/,AHE(14) /16.86/,AHE (15) /16.84/,AHE (16) /16.67/
DATA BHE(1)/0.4770/,BHE(2)/0.5747/,BHE(3)/0.6527/,BHE (4)/0.7223/,

* BHE (5) /0.7582/,BHE (6) /0.7957/,BHE(7) /0.8279/,BHE(8) /0.8553/,

* BHE (9)/0.8757/,BHE (10)/0.8903/,BHE(11)/0.8997/,

* BHE

* BHE /O.9217/,BHE(16)/O.9267/

/38.09/,AN2 (2)/32.57/,AN2(3)/28.07/,AN2 (4) /24.63/,

* AN2 (5) /21.71/,AN2(6)/18.24/,AN2(7)/16.11/,AN2(8) /14.66/,
* AN2 (9) /13.64/,AN2 (10) /12.37/,AN2 (11) /11.39/,AN2(12)/10.50/,
* AN2 /9.28/,AN2(14)/8.91/,AN2(15 /8 22/,AN2 (16) /7 58/
DATA BN2(1)/0.5578/,BN2(2)/0.6514/,BN2(3)/0.7222/,BN2(4)/0.7825/,

BN2
BN2
BN2
BN2

/0.8126/,BN2(6)/0.8434/,BN2(7)/0.8693/,BN2(8)/0.8910/,
/0.9092/,BN2 (10) /O.9222/,BN2 (11)/0.9319/,
2)/0.9403/,BN2(13)/0.9477/,BN2(14) /0.9544/,
5)/0.9602/,BN2(16)/0.9653/

)
)
)
3)
)
)
)
2)/0.9073/,BHE(13)/0.9122/,BHE(14)/0.9171/,
5)
)
)
)
3)
)
)
)

* ok % %

(5
(9
(1
(1
(5
(9
(1
(1
DATA AN2 (1
(5
(9
(1
(1
(5
(9
(1
(1

END

The following BLOCK DATA subprogram initializes the Buhlmann Coefficients for
Compartments 1b thru 16 for the European System of Pressure Units, meters of
seawater (msw). These are the ZH-L16A Coefficients for helium (AHE and BHE)
and the ZH-L16B Coefficients for nitrogen (AN2 and BN2). The “a” Coefficients
(AHE and AN2) are expressed in meters of seawater, msw, absolute:

BLOCK DATA COEFFS

REAL AHE, BHE, AN2, BN2

DIMENSION AHE(16), BHE(16), AN2(16), BN2(16)
COMMON /E/ AHE, BHE, AN2, BN2

DATA AHE 1)/16.189/,AHE(2)/13.830/,AHE (3)/11.919/,AHE (4) /10.458/,
* (5)/9.220/,AHE)/8.205/,AHE (7)/7.305/,AHE (8) /6.502/,

* E(9)/5.950/,AHE(10) /5.545/,AHE (11) /5.333/,
* E(12)/5.189/,AHE(13)/5.181/,AHE(14)/5.176/,
* E(15)/5.172/,AHE(16)/5.119/

DATA BHE(l)/O.4770/,BHE(2)/O.5747/,BHE(3)/O.6527/,BHE(4)/O.7223/,
* BHE (5) /0.7582/,BHE (6) /0.7957/,BHE(7) /0.8279/,BHE(8) /0.8553/,
* BHE (9)/0.8757/,BHE (10)/0.8903/,BHE(11)/0.8997/,

* BHE (12)/0.9073/,BHE(13) /0.9122/,BHE (14) /0.9171/,
* BHE(15 /0.9217/,BHE(16)/0.9267/

DATA 2(1)/11.696/,AN2(2)/10.000/,AN2(3)/8.618/,AN2(4)/7.562/,

* 2(5)/6.667/,AN2(6)/5.600/,AN2 (7) /4.947/,AN2(8) /4.500/,

20

* % F

DATA

END

AN2 (9)/4.187/,AN2(10)/3.798/,AN2 (11) /3.497/,

AN2 (12)/3.223/,AN2(13)/2.850/,AN2 (14) /2.737/,

AN2 (15) /2.523/,AN2 (16) /2.327/

BN2 (1) /0.5578/,BN2(2)/0.6514/,BN2 (3)/0.7222/,BN2 (
BN2 (5)/0.8126/,BN2(6)/0.8434/,BN2(7)/0.8693/,BN2 (
BN2 (9) /0.9092/,BN2 (10) /o 9222/,BN2(11)/0.9319/,
BN2 (12)/0.9403/,BN2(13)/0.9477/,BN2(14) /0.9544/,
BN2 (15) /0.9602/,BN2(16) /0.9653/

21

4)/0.7825/,
8)/0.8910/,

Example of complete,
ready for compiling:

functional FORTRAN Decompression Program

PROGRAM DECOCALC

c BUHLMANN 16 COMPARTMENTS,

CHARACTER COMAND*3,
INTEGER NUMMIX,

WORD*7, LINE1*70
PROFIL, SEGNUM, MIXNUM

ZH-1L16B M-VALUES, MSW UNITS

(msw units)

FCTRLO, FCTRSL

REAL RTIME, PAMB, PH20, FACTOR, CEILNG, STOPD, STEPSZ
REAL FO2, FHE, FN2, FSUM, CKSUM, CHANGE, PMVMAX, SGTIME
REAL PHE, PN2, HALFTH, HALFTN, KHE, KN2, FCTRHI,

REAL DEPTH, FDEPTH, SDEPTH, RATE, SRTIME, DECORT, STOPT
REAL O2DECO, TEMP1l, TEMP2, NXSTOP, STOPGF, TRIALD
DIMENSION FO2(10), FHE(10), FN2(10), PHE(16), PN2(16)
DIMENSION HALFTH(16), HALFTN(1l6), E(16), 2(16)

COMMON /A/ FHE, KHE, KN2,
COMMON /B/ MIXNUM, /C/ PHE,

PN2,

PH20, /B/ RTIME, SEGNUM, FN2,
/D/ PAMB, /F/ FACTOR, /J/ O2DECO

SGTIME

DATA HALFTH(1)/1.88/,HALFTH(2)/3.02/,HALFTH(3)/4.72/,
* HALFTH(4)/6.99/,HALFTH(5)/10.21/,HALFTH (6) /14 .48/,
* HALFTH (7)/20.53/,HALFTH(8) /29.11/,HALFTH(9) /41.20/,
* HALFTH (10) /55.19/,HALFTH(11) /70.69/,HALFTH(12) /90.34/,
* HALFTH (13)/115.29/,HALFTH(14) /147.42/,HALFTH (15) /188.24/,
* HALFTH (16) /240.03/
DATA HALFTN(1)/5.0/,HALFTN(2)/8.0/,HALFIN(3)/12.5/,
* HALFTN (4)/18.5/,HALFTN(5) /27.0/,HALFTN (6) /38.3/,
* HALFTN (7)/54.3/,HALFTN(8)/77.0/,HALFTN (9) /109.0/,
* HALFTN (10) /146.0/,HALFTN(11) /187.0/,HALFTN (12) /239.0/,
* HALFTN (13) /305.0/,HALFTN(14) /390.0/,HALFTN (15) /498.0/,
* HALFTN (16) /635.0/
PH20 = 0.567
RTIME = 0.0
SEGNUM = 0
COMAND = 'CLS'
DO 10 I = 1,16
KHE (I) = ALOG(2.0)/HALFTH (I)
KN2 (I) = ALOG(2.0)/HALFTN(I)
PHE(I) = 0.00
PN2 (I) = 7.452
10 CONTINUE
CALL SYSTEMQQ (COMAND)
PRINT *,' !
PRINT *, 'PROGRAM DECOCALC'
PRINT *,' !
OPEN (UNIT = 7, FILE = 'DECOCALC.IN', STATUS = 'UNKNOWN',
* ACCESS = 'SEQUENTIAL', FORM = 'FORMATTED')
OPEN (UNIT = 8, FILE = 'DECOCALC.OUT', STATUS = 'UNKNOWN',
* ACCESS = 'SEQUENTIAL', FORM = 'FORMATTED')
READ (7,801) LINE1
WRITE (8,802)
WRITE (8,800)
WRITE (8,803) LINE1
WRITE (8,800)
READ (7,*) NUMMIX
DO 45 I = 1, NUMMIX
READ (7,*) FO2(I), FHE(I), FN2(I)
FSUM = FO2(I) + FHE(I) + FN2(I)
CKSUM = FSUM
IF (CKSUM .NE. 1.0) THEN
CALL SYSTEMQQ (COMAND)
PRINT *,'
PRINT *, 'ERROR IN INPUT FILE (GASMIX DATA) - PROGRAM TERM
* INATED'
PRINT *,'
GOTO 350
END IF

22

45 CONTINUE
WRITE (8,810)
DO 55 J = 1, NUMMIX
WRITE (8,811) J, FO2(J), FHE(J), FN2(J)
55 CONTINUE
READ (7,*) O2DECO
WRITE (8,800)

WRITE (8,812) O2DECO
WRITE (8,800)
WRITE (8,820)
WRITE (8,800)
WRITE (8,821)
WRITE (8,822)
WRITE (8,823)
)

WRITE (8,824
100 CONTINUE
READ (7,*) PROFIL
IF (PROFIL .EQ. 1) THEN
READ (7,*) SDEPTH, FDEPTH, RATE, MIXNUM
CALL ASCDEC (SDEPTH, FDEPTH, RATE)
IF (FDEPTH .GT. SDEPTH) THEN
WORD = 'Descent'
ELSE IF (SDEPTH .GT. FDEPTH) THEN
WORD = 'Ascent '
ELSE
WORD = 'ERROR'
END IF
WRITE (8,830) SEGNUM, SGTIME, RTIME, MIXNUM, WORD, SDEPTH,
* FDEPTH, RATE
ELSE IF (PROFIL .EQ. 2) THEN
READ (7,*) DEPTH, SRTIME, MIXNUM
CALL CDEPTH (DEPTH, SRTIME)
WRITE (8,831) SEGNUM, SGTIME, RTIME, MIXNUM, DEPTH
ELSE IF (PROFIL .EQ. 99) THEN

GOTO 200
ELSE
CALL SYSTEMQQ (COMAND)
PRINT *,"' !
PRINT *, 'ERROR IN INPUT FILE (PROFILE CODE) - PROGRAM TERMINA
*TED'
PRINT *,"' !
GOTO 350
END IF
GOTO 100

200 CONTINUE
READ (7,*) SDEPTH
READ (7,*) MIXNUM, RATE, STEPSZ, FCTRHI, FCTRLO
READ (7,*) CHANGE
WRITE (8,800)

WRITE (8,840)
WRITE (8,800)
WRITE (8,841)
WRITE (8,842)
WRITE (8,843)
WRITE (8,844)

DECORT = 0.0
FACTOR = FCTRLO
TEMP1 = (SDEPTH/3.0) -
TRIALD = AINT (TEMP1l) *
TEMP2 = TRIALD
IF (TEMP2 .LE. 0.0) THEN
TRIALD = 0.0
END IF
230 CALL SAFASC (CEILNG)
IF (CEILNG .GT. TRIALD) THEN

0.5
3.0

23

STOPD = SDEPTH
NXSTOP = TRIALD
GOTO 240
END IF
CALL ASCDEC (SDEPTH, TRIALD, RATE)
CALL MVCALC (PMVMAX)
IF (TRIALD .EQ. 0.0) THEN
WRITE (8,850) SEGNUM, SGTIME, RTIME, MIXNUM, TRIALD, RATE,

* PMVMAX, FACTOR
GOTO 300
ELSE
WRITE (8,851) SEGNUM, SGTIME, RTIME, MIXNUM, TRIALD, RATE,
* PMVMAX
END IF

IF (CHANGE .EQ. TRIALD) THEN
READ (7,*) MIXNUM, RATE, STEPSZ
READ (7,*) CHANGE

END IF
SDEPTH = TRIALD
TRIALD = SDEPTH - 3.0
GOTO 230
240 IF (STOPD .GT. 0.0) THEN
FCTRSL = (FCTRHI - FCTRLO)/ (0.0 - STOPD)
END IF
250 STOPGF = FACTOR

FACTOR = NXSTOP*FCTRSL + FCTRHI
CALL DSTOP (STOPD, NXSTOP)
IF (DECORT .EQ. 0.0) THEN

STOPT = ANINT (SGTIME + 0.5)
ELSE
STOPT = RTIME - DECORT
END IF
WRITE (8,852) SEGNUM, SGTIME, RTIME, MIXNUM, INT (STOPD),
* INT (STOPT), INT(RTIME), STOPGF

SDEPTH = STOPD
STOPD = NXSTOP
DECORT = RTIME
CALL ASCDEC (SDEPTH, STOPD, RATE)
PAMB = STOPD + 10.0
CALL MVCALC (PMVMAX)
IF (STOPD .EQ. 0.0) THEN
WRITE (8,850) SEGNUM, SGTIME, RTIME, MIXNUM, STOPD, RATE,

* PMVMAX, FACTOR
ELSE
WRITE (8,851) SEGNUM, SGTIME, RTIME, MIXNUM, STOPD, RATE,
* PMVMAX
END IF
IF (STOPD .EQ. 0.0) THEN
GOTO 300
END IF

IF (CHANGE .EQ. STOPD) THEN
READ (7,*) MIXNUM, RATE, STEPSZ
READ (7,*) CHANGE

END IF

IF (STOPD - STEPSZ .LT. 0.0) THEN
NXSTOP = 0.0

ELSE
NXSTOP

END IF

GOTO 250

300 CONTINUE
WRITE (*,800

STOPD - STEPSZ

)
WRITE (*,860)
WRITE (*,861)
WRITE (*,800)

24

350 CONTINUE
CLOSE (UNIT 7, STATUS '"KEEP')
CLOSE (UNIT = 8, STATUS = 'KEEP')

800 FORMAT (' ')

801 FORMAT (A70)

802 FORMAT (26X, 'DECOMPRESSION CALCULATION PROGRAM')

803 FORMAT ('Description:',b4X,A70)

810 FORMAT 'Gasmix Summary:',24X, 'FO2',64X, 'FHe', 64X, 'FN2"')

811 FORMAT (26X, 'Gasmix #',I2,2X,F5.3,2X,F5.3,2X,F5.3)

812 FORMAT ('O2 Deco Factor: 80-100% Nitrox or 02 mixes calculated',
* 1X,'at',2P,F5.0,'% of actual 02 fraction')

820 FORMAT (36X, 'DIVE PROFILE')

821 FORMAT ('Seg—',2X,'Segm.',ZX,'Run',BX,'|',1X,'Gasmix',lX,'|',1X,

(
(
(
(
(
(

* 'Ascent',4X, 'From',5X, 'To',6X, 'Rate',4X,'|', 1X, 'Constant')
822 FORMAT ('ment',2X,'Time',3X,'Time',2X,'|',2X,'Used',2X,"'|",3X,
* 'or',5X, 'Depth', 3X, 'Depth',4X, '+Dn/-Up',2X,'|',2X, 'Depth')

823 FORMAT (2X,'#',3X,'(min)',2X,'(min)',lX,'|',4X,'#',3X,'|',1X,
'Descent',2X, ' (mswg) ',2X, ' (mswg) ',2X, ' (msw/min) ', 1X,
tlr,2X, " (mswg) ')

824 FORMAT ('----- L G ',2X, ' ----- LXK, |, LR, e e L1X,],
* 1X, '------- I G I G I G ', 1%,
* R b G ")

830 FORMAT (I3,3X,F5.1,1X,F6.1,1X,'|',3X,I2,3X,"'|"',1X,A7,F7.0,
* 1X,F7.0,3X,F7.1,3%X,"'|")

831 FORMAT (I3,3X,F5.1,1X,F6.1,1X,'|',3X,I2,3X,'|"',36X,"'|"',F7.0)
840 FORMAT (31X, 'DECOMPRESSION PROFILE')
841 FORMAT ('Seg-',2X,'Segm.',2X,'Run',63X,'|',6 1X, 'Gasmix"',1X,"'|"', 11X,
* 'Ascent', 3X, 'Ascent',3X, 'Max',3X,'|',2X, 'DECO',3X, 'STOP',
3X, 'RUN', 5%, 'Gradient"')
842 FORMAT ('ment',2X,'Time',3X,'Time',2X,'|"',2X,'Used',2X,"']|",3X,
* 'To',6X, 'Rate',4X, '$M-',3X,'|',2X, 'STOP',3X, 'TIME', 3X,
* '"TIME', 4X, 'Factor')
843 FORMAT (2X,'#',h3X,'(min)',2X,' (min)',1X,"'|"',4X,"#',3X,"'|", 11X,
1

* ' (mswg) ',1X, ' (msw/min) ,1X,'Va1ue',2X,'|',1X,'(mswg)',
2X, " (min) ', 2X, ' (min) ',4X, ' (GF) ")
844 FORMAT ('----- L G ',2X, ' ----- LXK, |, LR, e e vL1X,],
* 1X, '------ D G D G v,1X, '], 1X,
L ',2X,' _____ I,2X,I _____ I,3X,I ______ I)
850 FORMAT (I3,3X,F5.1,1X,F6.1,1X,'|',3X,I2,3X,'|',2X,F4.0,3X,F6.1,
* 3X,2P,F5.1,'%',1X,'|"',24X,0P,F5.2)
851 FORMAT (I3,3X,F5.1,1X,F6.1,1X,'|"',3X,I2,3X,'|"',2X,F4.0,3X,F6.1,
* 3X,2P,F5.1,'%',1X,'|")
852 FORMAT (I3,3X,F5.1,1X,F6.1,1X,'|',3X,I2,3X,"'|"',25%,"'|",3X,1I3,4X,
* I13,3X,14,4X,F5.2)

860 FORMAT (' PROGRAM CALCULATIONS COMPLETE')
861 FORMAT ('OOutput data is located in the file DECOCALC.OUT')

END
C
C

SUBROUTINE ASCDEC (SDEPTH, FDEPTH, RATE)
C

INTEGER MIXNUM, TEMPSG, SEGNUM

REAL FHE, FN2, KHE, KN2, PHEO, PN20, PHE, PN2, PH20

REAL FDEPTH, SDEPTH, PIHEO, PIN20, RATE, RTIME, SGTIME, TEMPRT
REAL HERATE, N2RATE, SPAMB, PAMB, FPAMB

DIMENSION FHE (10), FN2(10), KHE(16), KN2(16)

DIMENSION PHEO(16), PN20(16), PHE(16), PN2(16)

COMMON /A/ FHE, KHE, KN2, PH20, /B/ RTIME, SEGNUM, FN2, SGTIME
COMMON /B/ MIXNUM, /C/ PHE, PN2, /D/ PAMB

SGTIME = (FDEPTH - SDEPTH) /RATE

TEMPRT = RTIME

RTIME = TEMPRT + SGTIME
TEMPSG = SEGNUM

SEGNUM = TEMPSG + 1

SPAMB = SDEPTH + 10.0

25

FPAMB = FDEPTH + 10.0

PAMB = FPAMB

PTHEO (SPAMB - PH20) *FHE (MIXNUM)
PIN20 = (SPAMB - PH20) *FN2 (MIXNUM)
HERATE = RATE*FHE (MIXNUM)

N2RATE = RATE*FN2 (MIXNUM)

DO 430 I = 1,16

PHEO(I) = PHE(I)

PN20(I) = PN2(I)

PHE (I) = PIHEO + HERATE* (SGTIME - 1.0/KHE(I)) -

* (PIHEO - PHEO(I) - HERATE/KHE (I))*EXP (-KHE(I)*SGTIME)

PN2 (I) = PIN20 + N2RATE* (SGTIME - 1.0/KN2(I)) -

* (PIN20 - PN20(I) - N2RATE/KN2 (I))*EXP (-KN2(I)*SGTIME)
430 CONTINUE

RETURN

END
c
c

SUBROUTINE CDEPTH (DEPTH, SRTIME)
c

INTEGER MIXNUM, TEMPSG, SEGNUM

REAL FHE, FN2, KHE, KN2, PHEO, PN20, PHE, PN2, PH20, SRTIME

REAL DEPTH, PAMB, PIHE, PIN2, RTIME, SGTIME, TEMPRT

DIMENSION FHE (10), FN2(10), KHE(1l6), KN2(16)

DIMENSION PHEO(16), PN20(16), PHE(16), PN2(16)

COMMON /A/ FHE, KHE, KN2, PH20, /B/ RTIME, SEGNUM, FN2, SGTIME

COMMON /B/ MIXNUM, /C/ PHE, PN2, /D/ PAMB

SGTIME = SRTIME - RTIME

TEMPRT = SRTIME

RTIME = TEMPRT

TEMPSG = SEGNUM

SEGNUM = TEMPSG + 1

PAMB = DEPTH + 10.0

PIHE = (PAMB - PH20) *FHE (MIXNUM)

PIN2 = (PAMB - PH20) *FN2 (MIXNUM)

DO 520 I = 1,16

PHEO(I) = PHE(I)

PN20 (I) = PN2(I)

PHE(I) = PHEO(I) + (PIHE - PHEO(I))*

* (1.0 - EXP (-KHE(I)*SGTIME))

PN2 (I) = PN20(I) + (PIN2 - PN20(I))*

* (1.0 - EXP (-KN2(I)*SGTIME))
520 CONTINUE

RETURN

END
c
c

SUBROUTINE SAFASC (CEILNG)
c

REAL AHE, BHE, AN2, BN2, AHEN2, BHEN2

REAL PHE, PN2, PHEN2, PAMBT, SAFEAD, FACTOR, CEILNG
DIMENSION AHE (16), BHE(16), AN2(16), BN2(16)

DIMENSION AHEN2 (16), BHEN2 (16), PHE(16), PN2(16)
DIMENSION PHEN2 (16), PAMBT (16), SAFEAD (16)

COMMON /C/ PHE, PN2, /E/ AHE, BHE, AN2, BN2, /F/ FACTOR
CEILNG = 0.0

DO 600 I = 1,16

PHEN2 (I) = PHE(I) + PN2(I)

AHEN2 (I) = (PHE(I)*AHE(I) + PN2(I)*AN2(I))/PHEN2 (I)

BHEN2 (I) = (PHE(I)*BHE(I) + PN2(I)*BN2(I))/PHEN2 (I)

PAMBT (I) = (PHEN2(I) - AHEN2 (I)*FACTOR)/ (FACTOR/BHEN2 (I) -
* FACTOR + 1.0)

SAFEAD (I) = PAMBT(I) - 10.0

CEILNG = MAX (CEILNG, SAFEAD(I))
600 CONTINUE

26

700

720

*

*

RETURN
END

SUBROUTINE DSTOP (STOPD, NXSTOP)

INTEGER MIXNUM, TEMPSG, SEGNUM

REAL FHE, FN2, KHE, KN2, PHEO, PN20, PHE, PN2, PH20
REAL STOPD, PAMB, PIHE, PIN2, RTIME, SGTIME, TEMPRT
REAL CEILNG, NXSTOP, ROUND, TEMPST, COUNT, O2DECO
DIMENSION FHE (10), FN2(10), KHE(le), KN2(16)
DIMENSION PHEO (16), PN20(16), PHE(1l6), PN2(1l6)

COMMON /A/ FHE, KHE, KN2, PH20, /B/ RTIME, SEGNUM, FN2, SGTIME
COMMON /B/ MIXNUM, /C/ PHE, PN2, /D/ PAMB, /J/ O2DECO
TEMPRT = RTIME
ROUND = ANINT (TEMPRT + 0.5)
SGTIME = ROUND - RTIME
RTIME = ROUND
TEMPST = SGTIME
TEMPSG = SEGNUM
SEGNUM = TEMPSG + 1
PAMB = STOPD + 10.0
PIHE = (PAMB - PH20) *FHE (MIXNUM)
IF ((FN2 (MIXNUM) .GE. 0.0) .AND. (FN2 (MIXNUM) .LE. 0.2)) THEN
PIN2 = (PAMB - PH20)* (1.0 - O2DECO + O2DECO*FN2 (MIXNUM))
ELSE
PIN2 = (PAMB - PH20) *FN2 (MIXNUM)

END IF
DO 720 I = 1,16
PHEO (I) = PHE(I)
PN20(I) = PN2(I)
PHE(I) = PHEO(I) + (PIHE - PHEO(I))*

(1.0 - EXP (-KHE(I)*SGTIME))
PN2 (I) = PN20(I) + (PIN2 - PN20(I))*

(1.0 - EXP (-KN2(I)*SGTIME))
CONTINUE

CALL SAFASC (CEILNG)

IF (CEILNG .GT. NXSTOP) THEN
SGTIME = 1.0
COUNT = TEMPST
TEMPST = COUNT + 1.0
TEMPRT = RTIME
RTIME = TEMPRT + 1.0

GOTO 700
END IF
SGTIME = TEMPST
RETURN

END

SUBROUTINE MVCALC (PMVMAX)

REAL AHE, BHE, AN2, BN2, AHEN2, BHEN2, PAMB

REAL PHE, PN2, PHEN2, MVALUE, PERCMV, PMVMAX
DIMENSION AHE (16), BHE(16), AN2(16), BN2(16)
DIMENSION AHEN2 (16), BHEN2 (16), PHE(16), PN2(16)
DIMENSION PHEN2 (16), MVALUE (16), PERCMV (16)

COMMON /C/ PHE, PN2, /D/ PAMB, /E/ AHE, BHE, AN2, BN2
PMVMAX = 0.0

DO 800 I = 1,16

PHEN2 (I) = PHE(I) + PN2(I)

AHEN2 (I) = (PHE(I)*AHE(I) + PN2(I)*AN2(I))/PHEN2 (I)
BHEN2 (I) = (PHE(I)*BHE(I) + PN2(I)*BN2(I))/PHEN2(I)
MVALUE (I) = PAMB/BHEN2() + AHEN2(I)

PERCMV (I) = PHEN2 (I)/MVALUE (I)

27

800

* %k * % * %k * % * %k * %

* Ok * %

PMVMAX = MAX (PMVMAX, PERCMV(I))
CONTINUE
RETURN

END

BLOCK DATA COEFFS

REAL AHE, BHE, AN2, BN2

DIMENSION AHE (16), BHE(1l6), AN2(1l6), BN2(1l6)
COMMON /E/ AHE, BHE, AN2, BN2

DATA AHE 1)/16.189/, AHE 2)/13.830/,AHE(3)/11.919/,AHE(4) /10.458/,
(5)/9 220/,AHE (6) /8.205/,AHE (7) /7.305/,AHE (8) /6.502/,
(9)/5.950/,AHE(10)/5.545/,AHE(11)/5.333/,
E(12)/5.189/,AHE(13)/5.181/,AHE(14) /5.176/,
E(15)/5.172/,AHE(16)/5.119/

DATA BHE(l)/O.4770/,BHE(2)/O.5747/,BHE(3)/O.6527/,BHE(4)/O.7223/,

BHE (5) /0.7582/,BHE(6) /0.7957/,BHE(7) /0.8279/,BHE(8) /0.8553/,
BHE (9)/0.8757/,BHE (10) /0.8903/,BHE(11)/0.8997/,

BHE (12)/0.9073/,BHE(13) /0.9122/,BHE (14) /0.9171/,

BHE(lS /O.9217/,BHE(16)/O.9267/

DATA 2(1)/11.696/,AN2(2)/10.000/, AN2 3)/8.618/,AN2(4)/7.562/,
2(5)/6.667/,AN2(6)/5.600/,AN2 (7) /4.947/,AN2(8)/4.500/,
2(9)/4.187/,AN2(10)/3.798/,AN2(11) /3.497/,
2(12)/3.223/,AN2(13)/2.850/, AN2(14)/2.737/,
2(15)/2.523/,AN2 (16)/2.327/

DATA BN2(1)/O 5578/,BN2(2)/0.6514/,BN2(3)/0.7222/,BN2(4) /0.7825/,
BN2(5)/0.8126/,BN2 (6) /o 8434/,BN2(7)/0.8693/,BN2(8)/0.8910/,
BN2(9)/0.9092/,BN2(10)/0.9222/,BN2(11)/0.9319/,

BN2 (12) /0.9403/,BN2(13)/0.9477/,BN2(14)/0.9544/,
BN2 (15) /0.9602/,BN2(16) /0.9653/
END

28

Example of input file, DECOCALC.IN, for use with FORTRAN Decompression
Program:

SAMPLE DIVE TO 90 METERS OF SEAWATER GAUGE (MSWG) FOR 20 MINUTES

.37
.64
.50
.20

1,-10,3,0.75,0.30

4

.13, .50,
.36,.00,
.50, .00,
.80, .00,
1.0

1
0,90,23,1
2
90,20,1
99

90

33
2,-10,3
21
3,-10,3
9
4,-10,3
0

Explanation of format for input file:

Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line

1:
2:
2a:
2b:
2C:
2d:
3:
4.
4a:
5:

Description of dive

Number of gas mixes

FO2, FHe, FN2 for gas mix #1

FO2, FHe, FN2 for next gas mix (#2)

FO2, FHe, FN2 for next gas mix (#3)

FO2, FHe, FN2 for next gas mix (#4)

Oxygen deco factor (usually between 0.8 and 1.0)

Profile code for first dive segment (1 = ascent/descent)
Start depth, final depth, rate of ascent/descent, gas mix number
Profile code for next dive segment (2 = constant depth)
Depth, run time at end of segment, gas mix number

Profile code to start decompression sequence (= 99)

Starting depth for decompression sequence

Gas mix number, ascent rate, step size, Hi Gradient Factor, Lo GF
Depth of next change in deco parameters

Gas mix number, ascent rate, step size

Depth of next change in deco parameters

Gas mix number, ascent rate, step size

Depth of next change in deco parameters

Gas mix number, ascent rate, step size

Depth of next change in deco parameters (or zero for surface)

29

Example of output file, DECOCALC.OUT, produced by FORTRAN Decompression
Program:
DECOMPRESSION CALCULATION PROGRAM

Description: SAMPLE DIVE TO 90 METERS OF SEAWATER GAUGE (MSWG) FOR 20 MINUTES
Gasmix Summary: FO2 FHe FN2

Gasmix # 1 .130 .500 .370

Gasmix # 2 .360 .000 .640

Gasmix # 3 .500 .000 .500

Gasmix # 4 .800 .000 .200
02 Deco Factor: 80-100% Nitrox or 02 mixes calculated at 100.% of actual 02 fraction

DIVE PROFILE

Seg- Segm. Run | Gasmix | Ascent From To Rate | Constant
ment Time Time | Used | or Depth Depth +Dn/-Up | Depth
(min) (min) i # i Descent (mswg) (mswg) (msw/min) i (mswg)
1 3.9 3.9 | 1 | Descent 0. 90. 23.0
2 16.1 20.0 | 1 | | 90
DECOMPRESSION PROFILE
Seg- Segm. Run Gasmix Ascent Ascent Max DECO STOP RUN Gradient
ment Time Time Used To Rate SM- STOP TIME TIME Factor
(min) (min) # (mswg) (msw/min) Value (mswg) (min) (min) (GF)
3 .3 20.3 1 87 -10.0 47.0%
4 .3 20.6 1 84 -10.0 48.6%
5 .3 20.9 1 81 -10.0 50.1%
6 .3 21.2 1 78 -10.0 51.7%
7 .3 21.5 1 75 -10.0 53.4%
8 .3 21.8 1 72 -10.0 55.1%
9 .3 22.1 1 69 -10.0 56.8%
10 .3 22 .4 1 66 -10.0 58.7%
11 .3 22.7 1 63. -10.0 60.6%
12 .3 23.0 1 60 -10.0 62.6%
13 .3 23.3 1 57 -10.0 64.7%
14 .3 23.6 1 54. -10.0 66.9%
15 .3 23.9 1 51. -10.0 69.5%
16 1 24.0 1 51 1 24 .30
17 .3 24 .3 1 48. -10.0 72.2%
18 .7 25.0 1 48 1 25 .33
19 .3 25.3 1 45. -10.0 74 .4%
20 .7 26.0 1 45 1 26 .35
21 .3 26.3 1 42. -10.0 76.6%
22 1.7 28.0 1 42 2 28 .38
23 .3 28.3 1 39. -10.0 77.5%
24 1.7 30.0 1 39 2 30 .41
25 .3 30.3 1 36. -10.0 78.5%
26 1.7 32.0 1 36 2 32 .43
27 .3 32.3 1 33. -10.0 79.8%
28 1.7 34.0 2 33 2 34 .46
29 .3 34.3 2 30. -10.0 78.9%
30 .7 35.0 2 30 1 35 .49
31 .3 35.3 2 27. -10.0 81.6%
32 1.7 37.0 2 27 2 37 .51
33 .3 37.3 2 24 . -10.0 82.5%
34 1.7 39.0 2 24 2 39 .54
35 .3 39.3 2 21. -10.0 85.1%
36 2.7 42.0 3 21 3 42 .56
37 .3 42.3 3 18. -10.0 86.0%
38 3.7 46.0 3 18 4 46 .59
39 .3 46.3 3 15. -10.0 86.8%
40 5.7 52.0 3 15 6 52 .62
41 .3 52.3 3 12. -10.0 87.2%
42 6.7 59.0 3 12 7 59 .64
43 .3 59.3 3 9 -10.0 88.9%
44 9.7 69.0 4 9 10 69 67
45 .3 69.3 4 6 -10.0 89.1%
46 14.7 84.0 4 6 15 84 70
47 .3 84 .3 4 3 -10.0 90.3%
48 30.7 115.0 4 3 31 115 .72
49 .3 115.3 4 0 -10.0 91.2% .75

30

